首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   0篇
安全科学   5篇
废物处理   8篇
环保管理   19篇
综合类   22篇
基础理论   29篇
环境理论   1篇
污染及防治   57篇
评价与监测   4篇
社会与环境   6篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   12篇
  2010年   6篇
  2009年   9篇
  2008年   10篇
  2007年   15篇
  2006年   8篇
  2005年   14篇
  2004年   7篇
  2003年   4篇
  2002年   1篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 156 毫秒
91.
To increase the awareness of society to the challenges of global food security, we developed five contrasting global and European scenarios for 2050 and used these to identify important issues for future agricultural research. Using a scenario development method known as morphological analysis, scenarios were constructed that took economic, political, technical, and environmental factors into account. With the scenarios as a starting point future challenges were discussed and research issues and questions were identified in an interactive process with stakeholders and researchers. Based on the outcome of this process, six socioeconomic and biophysical overarching challenges for future agricultural were formulated and related research issues identified. The outcome was compared with research priorities generated in five other research programs. In comparison, our research questions focus more on societal values and the role of consumers in influencing agricultural production, as well as on policy formulation and resolving conflicting goals, areas that are presently under-represented in agricultural research. The partly new and more interdisciplinary research priorities identified in Future Agriculture compared to other programs analyzed are likely a result of the methodological approach used, combining scenarios and interaction between stakeholders and researchers.  相似文献   
92.
Fredrik Dalerum 《Ambio》2014,43(7):839-846
Humans are altering their living environment to an extent that could cause environmental collapse. Promoting change into environmental sustainability is therefore urgent. Despite a rapid expansion in conservation biology, appreciation of underlying causes and identification of long-term solutions have largely been lacking. I summarized knowledge regarding the environmental crisis, and argue that the most important contributions toward solutions come from economy, political sciences, and psychology. Roles of conservation biology include providing environmental protection until sustainable solutions have been found, evaluating the effectiveness of implemented solutions, and providing societies with information necessary to align effectively with environmental values. Because of the potential disciplinary discrepancy between finding long-term solutions and short-term protection, we may face critical trade-offs between allocations of resources toward achieving sustainability. Since biological knowledge is required for such trade-offs, an additional role for conservation biologists may be to provide guidance toward finding optimal strategies in such trade-offs.  相似文献   
93.
Modeling the Baltic Sea eutrophication in a decision support system   总被引:4,自引:0,他引:4  
Savchuk OP  Wulff F 《Ambio》2007,36(2-3):141-148
SANBALTS (Simple As Necessary Baltic Long-Term Large-Scale) is a model of the coupled nitrogen and phosphorus cycles. This model has been developed as an integral part of the decision support system Marine Research on Eutrophication's Nest with the overall aim to evaluate management options for reducing Baltic Sea eutrophication. Simulated nutrient and oxygen concentrations as well as transport flows and major biogeochemical fluxes can be analyzed in many different ways, including construction of detailed nutrient budgets and tracing the fate of nutrient inputs. The large amounts of data that exist for this sea makes it possible to validate model results with observations. Major biogeochemical properties of the Baltic Sea are discussed through an analyses of model sensitivity to external forcing and internal parameterizations. Model results emphasize two features that are especially important for ecosystem management: i) impacts of local measures would always be modified by the long-range transports from other regions and ii) the response to significant changes in loads would only be seen after several decades.  相似文献   
94.
Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.  相似文献   
95.
Soil water repellency in golf putting greens may induce preferential "finger flow," leading to enhanced leaching of surface applied fungicides. We examined the effects of root zone composition, treatment with a non-ionic surfactant, and the use of the fungicide iprodion or a combination of azoxystrobin and propiconazole on soil water repellency, soil water content distributions, fungicide leaching, and turf quality during 1 yr. Soil water repellency was measured using the water drop penetration time (WDPT) test and tension infiltrometers. Our study was made on a 3-yr-old experimental green seeded with creeping bentgrass (Agrostis stolonifera L.) 'Penn A-4' at Landvik in southeast Norway. The facility consists of 16 lysimeters with two different root zone materials: (i) straight sand (1% gravel, 96% sand, 3% silt and clay, 4 g kg(-1) organic matter) (SS) and (ii) straight sand mixed with garden compost to an organic matter content of 21 g kg(-1) (Green Mix [GM]). Surfactant treatment resulted in 96% lower average WDPTs at 1 cm depth, three times higher water infiltration rates at the soil surface, and reduced spatial variation in soil water contents. Fungicide leaching was close to zero for the GM lysimeters probably due to stronger sorption. Concentrations in the drainage water from SS lysimeters often exceeded surface water guideline values for all three fungicides, but surfactant treatment dramatically reduced fungicide leaching from these lysimeters. In autumn and winter, surfactant-treated plots were more infected with fungal diseases probably because of higher water content in the turfgrass thatch layer.  相似文献   
96.
Persson A  Stenberg M 《Ecology》2006,87(8):1953-1959
Optimality theory rests on the assumptions that short-term foraging decisions are driven by variation in environmental quality, and that these decisions have important implications for long-term fitness. These assumptions, however, are rarely tested in a field setting. We linked behavioral foraging decisions in food patches with measures of environmental quality covering larger spatial (resource density) or temporal (growth parameters) scales. In 10 lakes, we measured the food density at which benthic fish give up foraging in experimental food patches (giving-up density, GUD), quantified the biomass of benthic invertebrates, and calculated the maximum individual size (L(infinity)) of bream (Abramis brama L.), a typical benthivore in these lakes. We found positive relationships between resource density and both GUD and L(infinity), and a positive relationship between L(infinity) and GUD. Prey characterized as vulnerable to predation contributed most to the relationships between resource density and either GUD or L(infinity). A path analysis showed that resource density and L(infinity) directly explained 54% and 28%, respectively, of the variation in GUD, whereas 86% of the variation in L(infinity) was explained by resource density, with mostly indirect contribution from GUD. We conclude that the short-term foraging behavior of benthivores matched our expectations based on optimality theory by being positively linked to variables on environmental quality operating at both a larger spatial scale and a longer temporal scale.  相似文献   
97.
Persson L  Alsberg T  Ledin A  Odham G 《Chemosphere》2006,64(7):1093-1099
The aim of the present study was to search for qualitative changes in the landfill leachate DOM along a groundwater gradient. The study was focused on DOM characteristics of importance for its interaction with pollutants, such as molecular weight distribution and aromaticity. It was concluded that the leachate DOM underwent substantial qualitative changes along the investigated gradient at the Vejen landfill, Denmark. The molecular weight decreased, the polydispersity increased, and the aromaticity varied with the lowest values found in the middle of the gradient. The high aromaticity in the end of the gradient may explain the higher DOM binding capacity towards hydrophobic compounds seen earlier in these samples. The relative abundance of ions with mass to charge ratio (m/z) of 600-1200 seemed to be very stable along the gradient, indicating that the observed qualitative changes of the DOM is mostly attributed to changes in the m/z 100-600 range. The DOM seemed to become more similar to fulvic acids present in uncontaminated groundwater with respect to molecular weight and polydispersity along the gradient.  相似文献   
98.
99.
Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites’ conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds.  相似文献   
100.
The environment in which biology exists has dramatically changed during the last decades. Life was formed during billions of years, exposed to, and shaped by the original physical forces such as gravitation, cosmic irradiation and the terrestrial magnetism. The existing organisms are created to function in harmony with these forces. However, in the late 19th century mankind introduced the use of electricity and during the very last decades, microwaves of the modern communication society spread around the world. Today one third of the world’s population is owner of the microwave-producing mobile phones. The question is: to what extent are living organisms affected by these ubiquitous radio frequency fields? Since 1988 our group has studied the effects upon the mammalian blood-brain barrier (BBB) by non-thermal radio frequency electromagnetic fields (RF-EMF). These have been revealed to cause significantly increased leakage of albumin through the BBB of exposed rats as compared to non-exposed animals—in a total series of about two thousand animals. One remarkable observation is the fact that the lowest energy levels give rise to the most pronounced albumin leakage. If mobile communication, even at extremely low energy levels, causes the users’ own albumin to leak out through the BBB, also other unwanted and toxic molecules in the blood, may leak into the brain tissue and concentrate in and damage the neurons and glial cells of the brain. In later studies we have shown that a 2-h exposure to GSM 915 MHz at non-thermal levels, gives rise to significant neuronal damage, seen 28 and 50 days after the exposure. In our continued research, the non-thermal effects (histology, memory functions) of long-term exposure for 13 months are studied as well as the effects of short term GSM 1,800 MHz upon gene expression. Most of our findings support that living organisms are affected by the non-thermal radio frequency fields. Studies from other laboratories in some cases find effects, while in other cases effects are not seen. Our conclusion is that all researchers involved in this field have the obligation to intensify this research in order to reduce, or avoid, the possible negative effects of the man made microwaves!  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号