首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   5篇
安全科学   17篇
废物处理   1篇
环保管理   17篇
综合类   242篇
基础理论   49篇
污染及防治   23篇
评价与监测   3篇
社会与环境   4篇
  2019年   6篇
  2018年   4篇
  2015年   9篇
  2014年   4篇
  2013年   16篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2003年   9篇
  2002年   4篇
  1998年   3篇
  1997年   4篇
  1994年   7篇
  1993年   3篇
  1986年   6篇
  1985年   3篇
  1963年   6篇
  1961年   5篇
  1960年   4篇
  1959年   4篇
  1958年   7篇
  1957年   8篇
  1956年   8篇
  1955年   7篇
  1954年   8篇
  1948年   3篇
  1946年   3篇
  1943年   6篇
  1942年   3篇
  1940年   8篇
  1939年   10篇
  1937年   3篇
  1936年   4篇
  1935年   3篇
  1934年   4篇
  1933年   5篇
  1931年   11篇
  1930年   9篇
  1927年   3篇
  1925年   6篇
  1924年   3篇
  1923年   8篇
  1922年   3篇
  1921年   8篇
  1920年   5篇
  1914年   3篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
351.
Mammalian hibernation, which lasts on average for about 6 months, can reduce energy expenditure by >90% in comparison to active individuals. In contrast, the widely held view is that daily torpor reduces energy expenditure usually by about 30%, is employed for a few hours every few days, and often occurs only under acute energetic stress. This interpretation is largely based on laboratory studies, whereas knowledge on daily torpor in the field is scant. We used temperature telemetry to quantify thermal biology and activity patterns of a small arid-zone marsupial, the stripe-faced dunnart Sminthopsis macroura (16.9 g), in the wild and to test the hypothesis that daily torpor is a crucial survival strategy of this species in winter. All individuals entered torpor daily with the exception of a single male that remained normothermic for a single day (torpor on 212 of 213 observation days, 99.5%). Torpor was employed at air temperatures (T a) ranging from approximately −1°C to 36°C. Dunnarts usually entered torpor during the night and aroused at midday with the daily increase of T a. Torpor was on average about twice as long (mean 11.0 ± 4.7 h, n = 8) than in captivity. Animals employed sun basking during rewarming, reduced foraging time significantly, and occasionally omitted activity for several days in sequence. Consequently, we estimate that daily torpor in this species can reduce daily energy expenditure by up to 90%. Our study shows that for wild stripe-faced dunnarts daily torpor is an essential mechanism for overcoming energetic challenges during winter and that torpor data obtained in the laboratory can substantially underestimate the ecological significance of daily torpor in the wild.  相似文献   
352.
Torpor and basking in a small arid zone marsupial   总被引:3,自引:3,他引:0  
The high energetic cost associated with endothermic rewarming from torpor is widely seen as a major disadvantage of torpor. We tested the hypothesis that small arid zone marsupials, which have limited access to energy in the form of food but ample access to solar radiation, employ basking to facilitate arousal from torpor and reduce the costs of rewarming. We investigated torpor patterns and basking behaviour in free-ranging fat-tailed dunnarts Sminthopsis crassicaudata (10 g) in autumn and winter using small, internal temperature-sensitive transmitters. Torpid animals emerged from their resting sites in cracking soil at ∼1000 h with body temperatures as low as 14.6°C and positioned themselves in the sun throughout the rewarming process. On average, torpor duration in autumn was shorter, and basking was less pronounced in autumn than in winter. These are the first observations of basking during rewarming in S. crassicaudata and only the second direct evidence of basking in a torpid mammal for the reduction of energetic costs during arousal from torpor and normothermia. Our findings suggest that although overlooked in the past, basking may be widely distributed amongst heterothermic mammals. Therefore, the energetic benefits from torpor use in wild animals may currently be underestimated.  相似文献   
353.
Yearlong hibernation in a marsupial mammal   总被引:4,自引:3,他引:1  
Many mammals hibernate each year for about 6 months in autumn and winter and reproduce during spring and summer when they are generally not in torpor. I tested the hypothesis that the marsupial pygmy-possum (Cercartetus nanus), an opportunistic nonseasonal hibernator with a capacity for substantial fattening, would continue to hibernate well beyond winter. I also quantified how long they were able to hibernate without access to food before their body fat stores were depleted. Pygmy-possums exhibited a prolonged hibernation season lasting on average for 310 days. The longest hibernation season in one individual lasted for 367 days. For much of this time, despite periodic arousals after torpor bouts of ∼12.5 days, energy expenditure was reduced to only ∼2.5% of that predicted for active individuals. These observations represent the first report on body-fat-fuelled hibernation of up to an entire year and provide new evidence that prolonged hibernation is not restricted to placental mammals living in the cold.  相似文献   
354.
Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders’ behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.  相似文献   
355.
Objectives: The U.S. New Car Assessment Program (NCAP) now tests for forward collision warning (FCW) and lane departure warning (LDW). The design of these warnings differs greatly between vehicles and can result in different real-world field performance in preventing or mitigating the effects of collisions. The objective of this study was to compare the expected number of crashes and injured drivers that could be prevented if all vehicles in the fleet were equipped with the FCW and LDW systems tested under the U.S. NCAP.

Methods: To predict the potential crashes and serious injury that could be prevented, our approach was to computationally model the U.S. crash population. The models simulated all rear-end and single-vehicle road departure collisions that occurred in a nationally representative crash database (NASS-CDS). A sample of 478 single-vehicle crashes from NASS-CDS 2012 was the basis for 24,822 simulations for LDW. A sample of 1,042 rear-end collisions from NASS-CDS years 1997–2013 was the basis for 7,616 simulations for FCW. For each crash, 2 simulations were performed: (1) without the system present and (2) with the system present. Models of each production safety system were based on 54 model year 2010–2014 vehicles that were evaluated under the NCAP confirmation procedure for LDW and/or FCW. NCAP performed 40 LDW and 45 FCW tests of these vehicles.

Results: The design of the FCW systems had a dramatic impact on their potential to prevent crashes and injuries. Between 0 and 67% of crashes and 2 and 69% of moderately to fatally injured drivers in rear-end impacts could have been prevented if all vehicles were equipped with the FCW systems. Earlier warning times resulted in increased benefits. The largest effect on benefits, however, was the lower operating speed threshold of the systems. Systems that only operated at speeds above 20 mph were less than half as effective as those that operated above 5 mph with similar warning times. The production LDW systems could have prevented between 11 and 23% of drift-out-of-lane crashes and 13 and 22% of seriously to fatally injured drivers. A majority of the tested LDW systems delivered warnings near the point when the vehicle first touched the lane line, leading to similar benefits. Minimum operating speed also greatly affected LDW effectiveness.

Conclusions: The results of this study show that the expected field performance of FCW and LDW systems are highly dependent on the design and system limitations. Systems that delivered warnings earlier and operated at lower speeds may prevent far more crashes and injuries than systems that warn late and operate only at high speeds. These results suggest that future FCW and LDW evaluation should prioritize early warnings and full-speed range operation. A limitation of this study is that additional crash avoidance features that may also mitigate collisions—for example, brake assist, automated braking, or lane-keeping assistance—were not evaluated during the NCAP tests or in our benefits models. The potential additional mitigating effects of these systems were not quantified in this study.  相似文献   
356.
Objective: Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes.

Methods: Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver.

Results: Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers traveling through the intersection without yielding (79.0%). After accounting for uncertainty in the timing of braking and steering data, the median evasive braking time was found to be between 0.5 to 1.5 s prior to impact, and the median initial evasive steering time was found to occur between 0.5 and 0.9 s prior to impact. The median average evasive braking deceleration for all cases was found to be 0.58 g. The median of the maximum evasive vehicle yaw rates was found to be 8.2° per second. Evasive steering direction was found to be most frequently in the direction of travel of the approaching vehicle.

Conclusions: The majority of drivers involved in intersection crashes were alert enough to perform an evasive action. Most drivers used a combination of steering and braking to avoid a crash. The average driver attempted to steer and brake at approximately the same time prior to the crash.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号