首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25909篇
  免费   234篇
  国内免费   196篇
安全科学   639篇
废物处理   1028篇
环保管理   3320篇
综合类   5375篇
基础理论   6315篇
环境理论   13篇
污染及防治   6402篇
评价与监测   1620篇
社会与环境   1500篇
灾害及防治   127篇
  2022年   205篇
  2021年   202篇
  2019年   183篇
  2018年   340篇
  2017年   316篇
  2016年   495篇
  2015年   404篇
  2014年   582篇
  2013年   1843篇
  2012年   698篇
  2011年   1033篇
  2010年   823篇
  2009年   962篇
  2008年   1071篇
  2007年   1114篇
  2006年   984篇
  2005年   837篇
  2004年   820篇
  2003年   816篇
  2002年   772篇
  2001年   1003篇
  2000年   674篇
  1999年   457篇
  1998年   295篇
  1997年   340篇
  1996年   359篇
  1995年   386篇
  1994年   383篇
  1993年   342篇
  1992年   310篇
  1991年   344篇
  1990年   332篇
  1989年   309篇
  1988年   263篇
  1987年   249篇
  1986年   246篇
  1985年   233篇
  1984年   265篇
  1983年   261篇
  1982年   269篇
  1981年   237篇
  1980年   216篇
  1979年   222篇
  1978年   193篇
  1977年   172篇
  1976年   161篇
  1975年   171篇
  1974年   173篇
  1973年   159篇
  1967年   155篇
排序方式: 共有10000条查询结果,搜索用时 558 毫秒
921.
Steady-state models for the prediction of P retention coefficient (R) in lakes were evaluated using data from 93 natural lakes and 119 reservoirs situated in the temperate zone. Most of the already existing models predicted R relatively successfully in lakes while it was seriously under-estimated in reservoirs. A statistical analysis indicated the main causes of differences in R between lakes and reservoirs: (a) distinct relationships between P sedimentation coefficient, depth, and water residence time; (b) existence of significant inflow–outflow P concentration gradients in reservoirs. Two new models of different complexity were developed for estimating R in reservoirs: , where τ is water residence time (year), was derived from the Vollenweider/Larsen and Mercier model by adding a calibrated parameter accounting for spatial P non-homogeneity in the water body, and is applicable for reservoirs but not lakes, and , where [Pin] is volume-weighted P concentration in all inputs to the water body (μg l−1), was obtained by re-calibrating the OECD general equation, and is generally applicable for both lakes and reservoirs. These optimised models yield unbiased estimates over a large range of reservoir types.  相似文献   
922.
Land use in the Chittagong Hill Tracts (CHT) of Bangladesh had undergone changes over the past several centuries. The landscape, which was mostly covered with forest with interspersed shifting cultivation plots until the beginning of the colonial period, has gradually changed into a landscape with a blend of land uses. Overall, the forest area has gradually declined, while the area under shifting cultivation and sedentary agriculture has expanded. The process of the change was multi-directional. National forestry, land use, land taxation, population migration policies, and development activities, such as construction of a hydroelectric dam and roads, played an important role in this process. Shifting cultivation had inflicted little damage on the forest until the beginning of the colonial period. The pace of deforestation accelerated with the nationalization of forests which abolished tribal people's customary use and management rights to the forest, and allowed large-scale commercial logging both legally and illegally. The pace was further intensified by the policy encouraging population migration to CHT and construction of a reservoir on the Karnafuli River. Efforts were made to replace shifting cultivation with more productive types of sedentary agriculture. However, much change could not take place in the absence of secure land rights, supportive trade policies, and the required support services and facilities, including infrastructure. Locationally suitable land use evolved in areas where transportation facilities were available and farmers were granted land title with the necessary extension services and credit facilities. These findings have important policy implications for the promotion of environmentally and economically sound land use in CHT.  相似文献   
923.
The regional-scale importance of an aquatic stressor depends both on its regional extent (i.e., how widespread it is) and on the severity of its effects in ecosystems where it is found. Sample surveys, such as those developed by the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP), are designed to estimate and compare the extents, throughout a large region, of elevated conditions for various aquatic stressors. In this article, we propose relative risk as a complementary measure of the severity of each stressor’s effect on a response variable that characterizes aquatic ecological condition. Specifically, relative risk measures the strength of association between stressor and response variables that can be classified as either “good” (i.e., reference) or “poor” (i.e., different from reference). We present formulae for estimating relative risk and its confidence interval, adapted for the unequal sample inclusion probabilities employed in EMAP surveys. For a recent EMAP survey of streams in five Mid-Atlantic states, we estimated the relative extents of eight stressors as well as their relative risks to aquatic macroinvertebrate assemblages, with assemblage condition measured by an index of biotic integrity (IBI). For example, a measure of excess sedimentation had a relative risk of 1.60 for macroinvertebrate IBI, with the meaning that poor IBI conditions were 1.6 times more likely to be found in streams having poor conditions of sedimentation than in streams having good sedimentation conditions. We show how stressor extent and relative risk estimates, viewed together, offer a compact and comprehensive assessment of the relative importances of multiple stressors.  相似文献   
924.
Determining a remeasurement frequency of variables over time is required in monitoring environmental systems. This article demonstrates methods based on regression modeling and spatio-temporal variability to determine the time interval to remeasure the ground and vegetation cover factor on permanent plots for monitoring a soil erosion system. The spatio-temporal variability methods include use of historical data to predict semivariograms, modeling average temporal variability, and temporal interpolation by two-step kriging. The results show that for the cover factor, the relative errors of the prediction increase with an increased length of time interval between remeasurements when using the regression and semivariogram models. Given precision or accuracy requirements, appropriate time intervals can be determined. However, the remeasurement frequency also varies depending on the prediction interval time. As an alternative method, the range parameter of a semivariogram model can be used to quantify average temporal variability that approximates the maximum time interval between remeasurements. This method is simpler than regression and semivariogram modeling, but it requires a long-term dataset based on permanent plots. In addition, the temporal interpolation by two-step kriging is also used to determine the time interval. This method is applicable when remeasurements in time are not sufficient. If spatial and temporal remeasurements are sufficient, it can be expanded and applied to design spatial and temporal sampling simultaneously.  相似文献   
925.
The development of ecologically sound water allocation strategies that account for the needs of riverine ecosystems is a pressing issue, especially in semiarid river basins. In the Aral Sea Basin, a search for strategies to mitigate ecological and socioeconomic deterioration has been in process since the early 1990s. The Geographic Information System–based simulation tool TUGAI has been developed to support the policy determination process by providing a simple, problem-oriented method to assess ecological effects of alternative water management strategies for the Amudarya River. It combines a multiobjective water allocation model with simple, spatially explicit statistical and rule-based models of landscape dynamics. Changes in environmental conditions are evaluated by a fuzzy habitat suitability index for Populus euphratica, which is the dominant species of the characteristic riverine Tugai forests. Water management scenarios can be developed by altering spatiotemporal water distribution in the delta area or the amount of water inflow into the delta. Outcomes of scenario analysis are qualitative comparisons of the ecological effects of different options for a time period of up to 28 years. The given approach utilizes different types of knowledge, from quantitative hydrological data to qualitative local expert knowledge. The main purpose of the tool is to integrate the knowledge in a comprehensive way to make it available for discussions on alternative policies in moderated workshops with stakeholders. In this article, the modules of the tool, their integration, and three hypothetical scenarios are presented. Based on the experience gained when developing the TUGAI tool, we propose that the general framework can be transferred to other areas where tradeoffs in water allocation between the environment and other water users are of major concern. The potential for a simulation tool to structure and inform a complex resource management situation by involving local experts and stakeholders in the development of possible future scenarios will become increasingly valuable for transparent and participatory resource management.  相似文献   
926.
927.
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.  相似文献   
928.
929.
Impacts of land cover on stream hydrology in the West Georgia Piedmont, USA   总被引:1,自引:0,他引:1  
The southeastern United States is experiencing rapid urban development. Consequently, Georgia's streams are experiencing hydrologic alterations from extensive development and from other land use activities such as livestock grazing and silviculture. A study was performed to assess stream hydrology within 18 watersheds ranging from 500 to 2500 ha. Study streams were first, second, or third order and hydrology was continuously monitored from 29 July 2003 to 23 September 2004 using InSitu pressure transducers. Rating curves between stream stage (i.e., water depth) and discharge were developed for each stream by correlating biweekly discharge measurements and stage data. Dependent variables were calculated from discharge data and placed into 4 categories: flow frequency (i.e., the number of times a predetermined discharge threshold is exceeded), flow magnitude (i.e., maximum and minimum flows), flow duration (i.e., the amount of time discharge was above or below a predetermined threshold), and flow predictability and flashiness. Fine resolution data (i.e., 15-min interval) were also compared to daily discharge data to determine if resolution affected how streams were classified hydrologically. Urban watersheds experienced flashy discharges during storm events, whereas pastoral and forested watersheds showed less flashy hydrographs. Also, in comparison to all other flow variables, flow frequency measures were most strongly correlated to land cover. Furthermore, the stream hydrology was explained similarly with both the 15-min and daily data resolutions.  相似文献   
930.
Recent adoption of national rules for organic crop production have stimulated greater interest in meeting crop N needs using manures, composts, and other organic materials. This study was designed to provide data to support Extension recommendations for organic amendments. Specifically, our objectives were to (i) measure decomposition and N released from fresh and composted amendments and (ii) evaluate the performance of the model DECOMPOSITION, a relatively simple N mineralization/immobilization model, as a predictor of N availability. Amendment samples were aerobically incubated in moist soil in the laboratory at 22 degrees C for 70 d to determine decomposition and plant-available nitrogen (PAN) (n = 44), and they were applied preplant to a sweet corn crop to determine PAN via fertilizer N equivalency (n = 37). Well-composted materials (n = 14) had a single decomposition rate, averaging 0.003 d(-1). For uncomposted materials, decomposition was rapid (>0.01 d(-1)) for the first 10 to 30 d. The laboratory incubation and the full-season PAN determination in the field gave similar estimates of PAN across amendments. The linear regression equation for lab PAN vs. field PAN had a slope not different from one and a y-intercept not different than zero. Much of the PAN released from amendments was recovered in the first 30 d. Field and laboratory measurements of PAN were strongly related to PAN estimated by DECOMPOSITION (r(2) > 0.7). Modeled PAN values were typically higher than observed PAN, particularly for amendments exhibiting high initial NH(4)-N concentrations or rapid decomposition. Based on our findings, we recommend that guidance publications for manure and compost utilization include short-term (28-d) decomposition and PAN estimates that can be useful to both modelers and growers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号