首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6690篇
  免费   38篇
  国内免费   948篇
安全科学   105篇
废物处理   209篇
环保管理   506篇
综合类   3387篇
基础理论   517篇
污染及防治   1947篇
评价与监测   534篇
社会与环境   382篇
灾害及防治   89篇
  2023年   28篇
  2022年   37篇
  2020年   50篇
  2019年   26篇
  2018年   32篇
  2017年   53篇
  2016年   41篇
  2015年   94篇
  2014年   42篇
  2013年   40篇
  2012年   436篇
  2011年   475篇
  2010年   83篇
  2009年   148篇
  2008年   489篇
  2007年   504篇
  2006年   418篇
  2005年   385篇
  2004年   360篇
  2003年   369篇
  2002年   310篇
  2001年   260篇
  2000年   164篇
  1999年   85篇
  1998年   29篇
  1997年   27篇
  1996年   32篇
  1995年   65篇
  1994年   44篇
  1993年   93篇
  1992年   84篇
  1991年   105篇
  1990年   131篇
  1989年   87篇
  1988年   190篇
  1987年   240篇
  1986年   122篇
  1985年   234篇
  1984年   214篇
  1983年   197篇
  1982年   161篇
  1981年   145篇
  1980年   128篇
  1979年   75篇
  1978年   77篇
  1977年   35篇
  1976年   62篇
  1975年   47篇
  1974年   69篇
  1973年   20篇
排序方式: 共有7676条查询结果,搜索用时 0 毫秒
991.
Assessing farming eco-efficiency: a Data Envelopment Analysis approach   总被引:4,自引:0,他引:4  
This paper assesses farming eco-efficiency using Data Envelopment Analysis (DEA) techniques. Eco-efficiency scores at both farm and environmental pressure-specific levels are computed for a sample of Spanish farmers operating in the rain-fed agricultural system of Campos County. The determinants of eco-efficiency are then studied using truncated regression and bootstrapping techniques. We contribute to previous literature in this field of research by including information on slacks in the assessment of the potential environmental pressure reductions in a DEA framework. Our results reveal that farmers are quite eco-inefficient, with very few differences emerging among specific environmental pressures. Moreover, eco-inefficiency is closely related to technical inefficiencies in the management of inputs. Regarding the determinants of eco-efficiency, farmers benefiting from agri-environmental programs as well as those with university education are found to be more eco-efficient. Concerning the policy implications of these results, public expenditure in agricultural extension and farmer training could be of some help to promote integration between farming and the environment. Furthermore, Common Agricultural Policy agri-environmental programs are an effective policy to improve eco-efficiency, although some doubts arise regarding their cost-benefit balance.  相似文献   
992.
993.
Xie X  Wang Q  Dai L  Su D  Wang X  Qi G  Ye Y 《Environmental management》2011,48(6):1095-1106
The maintenance of a timely, reliable and accurate spatial database on current forest ecosystem conditions and changes is essential to characterize and assess forest resources and support sustainable forest management. Information for such a database can be obtained only through a continuous forest inventory. The National Forest Continuous Inventory (NFCI) is the first level of China’s three-tiered inventory system. The NFCI is administered by the State Forestry Administration; data are acquired by five inventory institutions around the country. Several important components of the database include land type, forest classification and ageclass/ age-group. The NFCI database in China is constructed based on 5-year inventory periods, resulting in some of the data not being timely when reports are issued. To address this problem, a forest growth simulation model has been developed to update the database for years between the periodic inventories. In order to aid in forest plan design and management, a three-dimensional virtual reality system of forest landscapes for selected units in the database (compartment or sub-compartment) has also been developed based on Virtual Reality Modeling Language. In addition, a transparent internet publishing system for a spatial database based on open source WebGIS (UMN Map Server) has been designed and utilized to enhance public understanding and encourage free participation of interested parties in the development, implementation, and planning of sustainable forest management.  相似文献   
994.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   
995.
Knowledge of radionuclide or trace element retention and translocation to plants following an aerial contamination event, for example, sprinkling with contaminated water, is necessary for the evaluation of human exposure through consumption of contaminated vegetables. The fate of 63Ni and 109Cd in all plant parts of three different vegetables after wet deposition on leaves or on fruits was studied. Lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and bean (Phaseolus vulgaris L.) grown under controlled conditions in a growth chamber were contaminated with 63Ni and 109Cd either on leaves, by means of two different contamination methods (a single early contamination and a repetitive one), or on bean husks (third contamination method: a single contamination at a late stage). Spiked and nonspiked organs were harvested at maturity and radionuclide contents were measured. The fraction retained was on average 56% of the initially administered doses of 63Ni and 87% of 109Cd. The leaf-to-other organ translocation factor was considerably higher for 63Ni (on average 43% of retained radioactivity) than for 109Cd (8%). Nickel-63 migrated throughout the whole plant following foliar contamination, and mainly toward young leaves, seeds in formation, and sink organs, whereas 109Cd migrated to a much lesser extent and only to the organs that were closest to the spiked one, and not at all into fruit. After a fruit contamination event, both radionuclides were translocated into the seeds of spiked fruits. Radionuclide retention and translocation were not affected by plant species, but principally by the type of organ contaminated.  相似文献   
996.
Simple models for phosphorus loss from manure during rainfall   总被引:1,自引:0,他引:1  
Mechanistic, predictive equations for phosphorus (P) transport in runoff from manure-applied fields constitute a critical knowledge gap for developing nonpoint-source pollution models. We derived two simple equations to describe the P release from animal manure during a rainfall event-one based on first-order P desorption kinetics and one based on second-order kinetics. The manure characteristics needed in the two kinetic equations are the maximum amount of water-extractable phosphorus (WEP) and a characteristic desorption time. Water-extractable P can be measured directly but currently the characteristic time can only be obtained by fitting experimental data. In addition, we evaluated two models usually used to estimate P loss from soil, the Elovitch equation and power function, both of which relate P loss to time. The models were tested against previously published data of P release from different manures under laboratory conditions. All equations fit the data well. Of the two kinetic equations, the second-order model showed better agreement with the data than the first-order model; for example, maximum relative differences between the model results and measured data were 2.6 and 4.7%, respectively. The characteristic times varied between 20 min for dairy manure and almost 100 min for poultry manure. The characteristic time did not appear to change with flow rate but decreased with smaller manure aggregates. The parameters for power-function relationships could not be related to measured manure characteristics. These results provide the first step to process-based approximations for predicting P release from manure with time during rainfall shortly after land application, when P losses are the greatest.  相似文献   
997.
Toxic metals removal from wastewater sewage sludge can be achieved through microbial processes involving Acidithiobacillus ferrooxidans. The oxidation of ferrous ions by A. ferrooxidans, cultured in sewage sludge filtrate, was studied in both batch and continuous flow stirred tank reactors. Sewage sludge filtrate containing natural nutrients (phosphorus and nitrogen) was recovered as effluent following the dehydration of a primary and secondary sludge mixture. Batch and continuous flow stirred tank reactor tests demonstrated that A. ferrooxidans were able to grow and completely oxidize ferrous iron in a culture medium containing more than 80% (v v(-1)) sewage sludge filtrate with 10 g Fe(II) L(-1) added. Toxic levels were reached when total organic carbon in the sewage sludge filtrate exceeded 250 mg L(-1). The ferric iron solution produced in the sludge filtrate by A. ferrooxidans was used to solubilize heavy metals in primary and secondary sludge. The solubilization of Cu, Cr, and Zn yielded 71, 49, and 80%, respectively. This is comparable with the yield percentages obtained using a FeCl(3) solution. The cost of treating wastewater sewage sludge by bioproducing a ferric ion solution from sewage sludge is three times less expensive than the conventional method requiring a commercial ferric chloride solution.  相似文献   
998.
Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models.  相似文献   
999.
In northeastern Austria, marshlands have been turned into the most productive arable land of the country. As a result, most headwater streams show structurally degraded channels, lacking riparian buffer zones, which are heavily loaded with nutrients from the surrounding crop fields. The present study examines whether longitudinally restricted riparian forest buffers can enhance the in-stream nutrient retention in nutrient-enriched headwater streams. We estimated nutrient uptake from pairwise, short-term addition experiments with NH, NH, PO, and NaCl within reaches with riparian forest buffers (RFB) and degraded reaches (DEG) of the same streams. Riparian forest buffers originated from the conservation of the pristine vegetation or from restoration measures. Hydrologic retention was calculated with the model OTIS-P on the basis of conductivity break-through curves from the salt injections. A significant increase in surface transient storage was revealed in pristine and restored RFB reaches compared with DEG reaches due to the longitudinal step-pool pattern and the frequent occurrence of woody debris on the channel bed. Ammonium uptake lengths were significantly shorter in RFB reaches than in DEG reaches, resulting from the higher hydrologic retention. Uptake velocities did not differ significantly between RFB and DEG reaches, indicating that riparian forest buffers did not affect the biochemical nutrient demand. Uptake of NH was mainly driven by autotrophs. Net PO uptake was not affected by riparian forest buffers. The study shows that the physical and biogeochemical effects of riparian forest buffers on the in-stream nutrient retention are limited in the case of highly eutrophic streams.  相似文献   
1000.
Vegetation type and density exhibited a considerable patchy distribution at very local scales in the Yellow River Delta, due to the spatial variation of soil salinity and water scarcity. We proposed that soil respiration is affected by the spatial variations in vegetation type and soil chemical properties and tested this hypothesis in three different vegetation patches (Phragmites australis, Suaeda heteroptera and bare soil) in winter (from November 2010 to April 2011). At diurnal scale, soil respiration all displayed single-peak curves and asymmetric patterns in the three vegetation patches; At seasonal scale, soil respiration all declined steadily until February, and then increased to a peak in next April. But, the magnitude of soil respiration showed significant differences among the three sites. Mean soil respiration rates in winter were 0.60, 0.45 and 0.17 μmol CO(2) m(-2) s(-1) for the Phragmites australis, Suaeda heteroptera and bare soil, respectively. The combined effect of soil temperature and soil moisture accounted for 58-68 % of the seasonal variation of winter soil respiration. The mean soil respiration revealed positive and linear correlations with total N, total N and SOC storages at 0-20 cm depth, and plant biomass among the three sites. We conclude that the patchy distribution of plant biomass and soil chemical properties (total C, total N and SOC) may affect decomposition rate of soil organic matter in winter, thereby leading to spatial variations in soil respiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号