首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3696篇
  免费   648篇
  国内免费   1295篇
安全科学   678篇
废物处理   87篇
环保管理   304篇
综合类   3181篇
基础理论   590篇
污染及防治   102篇
评价与监测   201篇
社会与环境   311篇
灾害及防治   185篇
  2024年   46篇
  2023年   110篇
  2022年   272篇
  2021年   336篇
  2020年   383篇
  2019年   229篇
  2018年   212篇
  2017年   232篇
  2016年   200篇
  2015年   222篇
  2014年   235篇
  2013年   303篇
  2012年   384篇
  2011年   346篇
  2010年   309篇
  2009年   347篇
  2008年   267篇
  2007年   289篇
  2006年   246篇
  2005年   216篇
  2004年   120篇
  2003年   84篇
  2002年   83篇
  2001年   64篇
  2000年   61篇
  1999年   29篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
排序方式: 共有5639条查询结果,搜索用时 31 毫秒
531.
林可霉素菌渣堆肥微生物群落多样性分析   总被引:1,自引:0,他引:1  
本试验以林可霉素菌渣-猪粪为原料、污泥-猪粪堆肥作对照,研究了林可霉素菌渣堆肥过程中残留林可霉素的降解情况,并基于Illumina Mi Seq高通量测序分析了林可霉素菌渣堆肥过程中微生物菌群的变化.结果表明:通过堆肥处理可以大幅度降解林可霉素菌渣中残留的林可霉素,经过33 d的堆肥处理后,林可霉素的残留量从最初的1 800 mg·kg-1降到483mg·kg-1,降解率高达73%.同时高通量测序结果表明,由于高含量的林可霉素残留,在堆肥初期和高温期林可霉素菌渣堆肥中细菌群落的分布丰度和多样性指数均低于污泥-猪粪堆肥,但真菌群落丰度和多样性均高于污泥-猪粪堆肥.林可霉素菌渣堆肥中细菌主要以Paucisalibacillus、Cerasibacillus、Bacillus、Virgibacillus、Ureibacillus、Paenibacillus、Sinibacillus属为主,而污泥-猪粪堆肥中主要以Truepera、Actinomadura、Pseudosphingobacterium、Pseudomonas、Luteimonas、Ureibacillus属为主,两者堆肥中微生物群落结构存在显著差异.随着堆肥进入腐熟期,林可霉素残留大幅度降解,抗生素对微生物的胁迫减小或解除,林可霉素菌渣-猪粪堆肥和污泥-猪粪堆肥相比,无论是细菌还是真菌,其微生物群落已逐渐趋同.表明堆肥处理可以大幅降解林可霉素残留,增加微生物多样性,有利于实现林可霉素菌渣无害化处理和资源化利用.  相似文献   
532.
山西省自然保护区生态系统格局及稳定性变化趋势研究   总被引:3,自引:2,他引:1  
掌握自然保护区生态系统格局信息,对于摸清生态环境现状,评估保护成效,进而提出保护对策具有重要的意义。论文以2000和2010年为时间点,利用生态系统转移矩阵和正向逆向转换指数(Positive and Negative Transformation Index,PNTI)模型分析山西省自然保护区生态系统格局转换趋势,并运用Shannon-Wiener多样性指数和净初级生产力(Net Primary Productivity,NPP)分级标准分析生态系统稳定性变化特征。结果表明:山西省自然保护区以森林生态系统为主,其次为草地生态系统和耕地生态系统;2000—2010年间,保护区生态系统格局朝着有利的方向发展,生态系统阻抗稳定性和恢复稳定性也呈增强趋势;保护区植被生长状况得到了较好的改善,且森林生态系统保护区的保护作用最为突出,其他保护区生态系统稳定性较弱,尤其需加强对野生动物保护区的管理与修复。  相似文献   
533.
中国2000—2010年耕地低效转化的空间特征   总被引:1,自引:0,他引:1  
张冰琦  郭静  于溪  李强  陈晋 《自然资源学报》2018,33(7):1230-1243
耕地向经济效益相对较低的用地类型转化具有多重社会及生态效应。论文首先将耕地向草地、灌丛地和裸地的转化定义为“耕地低效转化”,然后以GlobeLand30为基础,提取2000—2010年的低效转化耕地,并结合耕地资源禀赋和地形条件,从多尺度、多角度深入揭示了我国耕地低效转化的空间分布特征。结果表明:1)全国总体的耕地低效转化率仅为1.50%,但区域差异明显,空间分布极不均衡;2)耕地低效转化依照地势的三级阶梯呈现明显的区域分异规律,农牧交错带的耕地转化问题最为严重,但耕作条件好、原有耕地比例高的东部地区,耕地低效转化水平一般较低;3)耕地低效转化率大体随海拔和坡度的增加而增加,但会受到地形复杂度的影响。  相似文献   
534.
粉煤灰提取氧化铝作为其资源高值利用的重要途径之一引起广泛关注.由于粉煤灰中还含有一定丰度Li(锂)元素,在提取氧化铝的同时实现Li的协同提取对于进一步提高粉煤灰的资源利用效益意义重大.为认识粉煤灰中Li的溶出特性,分别考察了原粉煤灰、CaO煅烧活化粉煤灰和Na2CO3煅烧活化粉煤灰中Li在酸性溶液和碱性溶液中的溶出特性,并采用XRD(X-射线衍射)分析了粉煤灰浸取前后的物相变化,结合Li溶出率的变化,阐释了Li在不同浸出条件下溶出率差异的原因.结果表明:在相同浸出温度(100℃)下粉煤灰直接在酸性溶液和碱性溶液中的溶出率相对较低,分别仅为28%和36%;而经CaO和Na2CO3活化后粉煤灰中Li的溶出率显著提高,活化后粉煤灰中Li在酸性溶液中的溶出率可达到98%和86%,均高于碱性溶液中Li的溶出率(86%和67%).XRD的分析结果进一步表明,部分Li可能赋存于非晶相或晶相表面,这部分Li易于被酸或碱直接浸出;部分Li可能镶嵌在莫来石、石英等晶相内部,不易被溶出,经CaO和Na2CO3助剂活化后,部分Li又重新嵌入到钙黄长石、霞石等新生成物相的晶格中,而这些物相更易于与酸反应,因而酸性溶液中Li的溶出率普遍高于碱性溶液中的结果.   相似文献   
535.
为研究基于实测土壤气中ρ(三氯乙烯)计算风险值与Johnson-Ettinger联合Dual-Equilibrium Desorption(JE-DED)模型和J&E模型计算风险值的差异,在MIL-101、UIO-66、ZIF-8和MOF-801金属-有机骨架(MOFs)材料,球形活性炭、膨胀石墨碳吸附材料及HiSiv1000和HiSiv3000分子筛等3类8种吸附剂中筛选出吸附效率较高的MIL-101 MOF材料用以吸附并测定土壤气中ρ(三氯乙烯),并将基于实测土壤气中ρ(三氯乙烯)计算的风险值与J&E模型和JE-DED模型计算的风险值进行比较.结果表明:①对于北京潮土和黑龙江黑土,J&E模型计算的风险值比基于实测土壤气中ρ(三氯乙烯)计算的风险值高2个数量级.②对于w(有机碳)较低的北京潮土,基于JE-DED模型计算的风险值比基于实测土壤气中ρ(三氯乙烯)计算的风险值高1个数量级,但比基于J&E模型计算的风险值低1个数量级,表明JE-DED模型预测结果更接近实际情况,但仍偏保守.③w(有机碳)较高的黑龙江黑土,JE-DED模型计算的风险值与基于实测土壤气中ρ(三氯乙烯)计算的风险值更接近,JE-DED模型可以比较准确地预测三氯乙烯的风险值.研究显示,采用土壤气中ρ(三氯乙烯)实测值和JE-DED模型进行风险评价在一定程度上可以避免J&E计算过于保守的问题,可以更加真实客观地反映场地污染程度而避免过度修复产生资源浪费.   相似文献   
536.
通过2014年5~6月(春末夏初季)和9~10月(秋季)在东海浅陆架区的现场调查,分析该海域DON来源和时空分布特征,结合同步进行的船基受控生物降解培养实验,评价了该海域两个季节DON的生物可利用性。春末夏初季和秋季东海浅陆架区DON为总溶解态氮(TDN)的主要存在形式,在TDN中占比均值分别为57.88%±21.42%和66.09%±19.74%。受陆源输入和黑潮水涌升及浮游生物分泌和微生物降解作用共同影响,表层海水DON春末夏初季呈现近岸高、远岸低的变化特征,高值区与长江冲淡水影响范围基本一致;秋季高值区则位于该海域的东北部和东南部;而受长江冲淡水影响显著的调查海域北部DON浓度高于南部;从水体表层到底层DON浓度及其在TDN中的占比都呈现逐步降低的变化趋势。该海域DON的生物可利用性具有较大时空差异性,具有高生物可利用性的DON(L-DON)含量基本呈现近岸高、远岸低的分布特征,春末夏初季和秋季受陆源输入影响显著的海域中L-DON在DON中占比分别达到28.3%和23.6%,高于受陆源输入影响小的海域的1.3%和18.9%。  相似文献   
537.
渔业养殖水环境中抗生素污染造成的水产品质量安全和环境微生物耐药性问题已经引起广泛关注。本文采用固相萃取-液相色谱/串联质谱法(LC-MS/MS)对桑沟湾养殖区海水及养殖水产品中17种喹诺酮类抗生素药物残留进行研究。结果显示,养殖区海水中喹诺酮类抗生素的检出率高达52.94%,含量水平介于ND~32.48 ng/L。不同的鱼类养殖区域海水中喹诺酮类药物含量差别较大,且浓度大小依次为为牙鲆(Paralichthys olivaceus)养殖区>黑鲪(Sebastes schlegelii)养殖区>红鳍东方鲀(Takifugu rubripes)养殖区。科普示范养殖区海水中喹诺酮类最高浓度范围与牙鲆养殖区相近,而近岸码头非养殖区海水中喹诺酮类检出率和残留浓度最低,表明桑沟湾海水中抗生素残留可能受水产养殖的影响。分析结果显示桑沟湾养殖区鱼肉中喹诺酮残留量远小于国家安全限量。  相似文献   
538.
浮游生物在水生态系统具有独特的生态功能,为了揭示独流减河口浮游生物群落结构与环境因子的相关性,本研究于2015年5月和8月对独流减河8个站位浮游生物及环境因子进行了调查分析。结果表明:(1)调查期间共鉴定出浮游植物38种,浮游动物10种。5月浮游植物的平均丰度为3.32×105/L,8月浮游植物的平均丰度为1.36×106/L,5月浮游动物的平均丰度为64.40 ind/L,8月浮游动物的平均丰度为18.65 ind/L。(2)环境因子方面,5月的平均溶解氧为12.30 mg/L,8月的平均溶解氧为6.69 mg/L。5月的平均盐度为32.70,8月的平均盐度为33.29。硝酸态氮、亚硝酸态氮和总氮平均水平为8月高于5月。调查期间氮元素主要以硝酸态存在,8月氨态氮元素向硝酸态转化。(3)典范对应分析(CCA)表明,亚硝酸盐是影响浮游生物丰度及多样性差异的主要影响因子。高溶解氧利于桡足类浮游动物和绿藻生长,高温不利于桡足类浮游动物和绿藻的生长,而高温更适合蓝藻的生长。  相似文献   
539.
不同排海方式城市尾水微生物扩散规律   总被引:1,自引:1,他引:0  
尾水中含有大量病原菌,回用或排入自然水体后会对人群健康和生态安全构成威胁.为了探究不同排海方式对微生物扩散规律的影响,本研究利用高通量测序技术对春季污水处理厂尾水细菌群落结构、优势菌群、典型致病菌及其随扩散距离的变化进行研究.结果发现,先排河后排海的尾水物种更加丰富,分布在58个菌纲,相对丰度大于1%的细菌有32种,而直接排海的尾水中仅有41个菌纲,相对丰度大于1%的细菌有28种.相对于直排过程,间排方式微生物群落结构相对丰度更高,说明尾水的直接排海使得微生物更易扩散.同一污水处理厂优势菌门所占比例随着扩散距离的增大整体呈下降趋势,蓝藻菌门(Cyanobacteria)等由于在自然水体中的高浓度出现随扩散距离增大整体上升的趋势.两个系统的优势菌门都属于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)及厚壁菌门(Firmicutes),纲、种水平重合度较低,但整体来讲排污口附近微生物多样性及丰度远高于海水(空白样品),且污水处理相关菌种丰度较高.另外,尾水中存在一定量的致病菌和条件致病菌,其中Pseudoalteromonas haloplanktis、Pseudomonas anguilliseptica致病性极强,扩散后相对丰度仍然很高,且弓形杆菌属(Arcobacter spp.)与人类和动物的腹泻、菌血症等疾病密切相关.因此,尾水排放过程中应对这几种细菌重点监测.  相似文献   
540.
不同基质浓度对ANAMMOX菌短期储存的影响   总被引:2,自引:1,他引:1  
高雪健  张杰  李冬  曹正美  郭跃洲  李帅 《环境科学》2018,39(12):5587-5595
在15℃±1℃条件下,将厌氧氨氧化菌混培物分别置于基质浓度为0、60、120 mg·L~(-1)添加比例为1∶1的NH+4-N和NO-2-N环境中短期(15 d)储存,探究不同基质浓度对厌氧氨氧化污泥短期保存及恢复的影响.经过短期储存后进行恢复实验,结果表明,1、2、3号反应器(分别对应0、60、120 mg·L~(-1)基质浓度中储存的厌氧氨氧化菌混培物)中的厌氧氨氧化活性分别下降41. 8%、17. 4%、33. 4.%,1、3号分别由于过度内源呼吸和高基质浓度抑制,导致活性下降较大,2号反应器由于基质浓度相对合适,避免了过度内源呼吸和高基质浓度抑制,使得菌种活性在该基质浓度下保留较好;储存期间,3个反应器内均发生内源呼吸消耗自身有机物的情况,导致EPS含量下降50. 9%、41. 7%、23. 7%和粒径下降31. 6%、16. 7%、8. 2%,表明在基质匮乏期菌体通过内源呼吸的方式维持自身的活性,较高的基质浓度可以在一定程度上延缓内源呼吸过程;在恢复期间,3个反应器分别经过15、10、7 d实现脱氮性能和厌氧氨氧化活性的恢复,表明同菌种增殖富集相比,原系统通过菌种活性增强的方式脱氮性能恢复更快.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号