首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   2篇
  国内免费   1篇
安全科学   3篇
废物处理   1篇
环保管理   13篇
综合类   38篇
基础理论   35篇
污染及防治   38篇
评价与监测   10篇
社会与环境   10篇
灾害及防治   1篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2018年   4篇
  2017年   2篇
  2016年   10篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   13篇
  2005年   11篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1983年   2篇
  1962年   1篇
  1959年   1篇
  1958年   2篇
  1955年   1篇
排序方式: 共有149条查询结果,搜索用时 31 毫秒
31.
A global three-dimensional Lagrangian chemistry-transport model STOCHEM is used to describe the European regional acid deposition and ozone air quality impacts along the Atlantic Ocean seaboard of Europe, from the SO2, NOx, VOCs and CO emissions from international shipping under conditions appropriate to the year 2000. Model-derived total sulfur deposition from international shipping reaches over 200 mg S m(-2) yr(-1) over the southwestern approaches to the British Isles and Brittany. The contribution from international shipping to surface ozone concentrations during the summertime, peaks at about 6 ppb over Ireland, Brittany and Portugal. Shipping emissions act as an external influence on acid deposition and ozone air quality within Europe and may require control actions in the future if strict deposition and air quality targets are to be met.  相似文献   
32.
33.
Residue analysis of toxaphene has been difficult because of the complexity of the technical mixture consisting of a high number of compounds with very similar structure and differing chlorine content. Furthermore, the composition of toxaphene in environmental samples varies widely and is normally not related to that of the technical mixture. Therefore, quantification of single components in environmental samples was impossible. After the isolation and identification of a great number of components during the last decade, enough standards are available for the reliable quantification of toxaphene in all environmental compartments. Recently, most research has been performed on the separation of chiral components of toxaphene with a view to identifying the degradation mechanisms and distribution pathways.  相似文献   
34.
The present work relates to galvanized structures with several years of time life subjected to atmospheric corrosion, like galvanized high tension steel pylons. The mass and fate of zinc released is evaluated both via empirical and experimental procedures. The corrosion rate determination requested atmospheric condition characterization, especially for SO 2 concentration and experimental activities focused on soil sampling around pylons. The soil zinc content, total and exchangeable, is determinates by different analytical procedures. The zinc diffusion in environment and the zinc extension under the top soil is evaluated using 1-dimensional mathematical model for miscible species in porous soil.  相似文献   
35.
Thioredoxins fulfill a number of different important cellular functions in all living organisms. In bacteria, thioredoxin genes are often regulated by external factors. In turn, thioredoxins influence the expression of many other genes. The multiple and important functions of thioredoxins in cells necessitate to appropriately adjust their level. This review outlines different strategies that have evolved for the regulation of bacterial thioredoxin genes. It also summarizes effects of thioredoxins on gene regulation and presents a recent model for a redox-dependent gene regulation that is mediated by thioredoxins.  相似文献   
36.
37.
Ecological Footprint Analysis (EFA) is an environmental accounting system that provides an aggregate indicator which is both scientifically robust and easy to understand by non-experts. Although based on the lifestyle consumption of natural resources, recent improvements in the methodology now allow the application of EFA to a final product. Thus the resulting footprint value represents the environmental cost of all of the activities required to create, use and/or dispose of a particular product. The application of EFA to agricultural systems is still uncommon and examples in the fruit sector rare. In this work a detailed application of EFA to a commercial nectarine orchard in Piedmont (Italy) is presented. In contrast to previous studies, we considered not only the one-year field operations, but also the whole lifetime of the orchard. The calculation was conducted for six different orchard stages: (ST1) nursery propagation of the young plants; (ST2) orchard establishment, (ST3) young trees producing low yields, (ST4) mature trees at full production, (ST5) declining trees with low yields, and finally (ST6) orchard removal. The environmental costs at each stage are presented and related to each other on the basis of the relative footprint value. Results highlight the importance of applying EFA to the entire lifecycle of orchard production: ST4 accounted for the majority of costs at 65% followed by ST2, ST3 and ST5 at or near 10%, whilst the costs of ST1 and ST6 were negotiable. Thus it is the type of ST4 production used which can have the greatest impact on EFA values.  相似文献   
38.
Cost-effective control of SO2 emissions in Asia   总被引:2,自引:0,他引:2  
Despite recent efforts to limit the growth of SO(2) emissions in Asia, the negative environmental effects of sulphur emissions are likely to further increase in the future. This paper presents an extension of the RAINS-Asia integrated assessment model for acidification in Asia with an optimisation routine that can be used to identify cost-effective emission control strategies that achieve environmental targets for ambient SO(2) concentrations and sulphur deposition at least costs. Example scenarios developed with this optimisation module demonstrate a potential for significant cost savings in Asia, if emission controls are allocated to those sources that have the largest environmental impact and are cheapest to control. It is shown that strategies that simultaneously address harmful population exposure and the risk of vegetation damage from acid deposition result in the most cost-effective use of resources spent for emission controls.  相似文献   
39.
We present a modeling study investigating the influence of climate conditions and solar radiation intensity on gas-phase trichloroacetic acid (TCA) formation. As part of the ECCA-project (Ecotoxicological Risk in the Caspian Catchment Area), this modeling study uses climate data specific for the two individual climate regimes, namely "Kalmykia" and "Kola Peninsula". A third regime has also been included in this study, namely "Central Europe", which serves as a reference to somehow more moderate climate conditions. The simulations have been performed with a box modeling package (SBOX, photoRACM), which uses Regional Atmospheric Chemistry Mechanism (RACM) as its chemistry scheme. For this model a mechanism supplement has been developed including the reaction pathways of methyl chloroform photooxidation. The investigations are completed by a detailed sensitivity study addressing the impact of temperature and relative humidity. Atmospheric OH and HO2 concentrations and the NOx/HO2 ratio were identified as the governing quantities controlling the TCA formation trough methyl chloroform oxidation in the gas phase. Model calculations show a TCA production rate ranging between almost zero and 6.5 x 10(3) molecules cm(-3) day(-1) depending on location and season. In the Kalmykia regime the model predicts mean TCA production rates of 1.3 x 10(-4) and 5.4 x 10(-5) microg m(-3) year(-1) for the urban and rural environment, respectively. From the comparison of model calculations with measured TCA burdens in the soil ranging between 130 g m(-3) and 1750 g m(-3) we conclude that TCA formation through methyl chloroform photooxidation in the gas-phase is probably not the principal atmospheric TCA source in this region.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号