首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2898篇
  免费   146篇
  国内免费   913篇
安全科学   243篇
废物处理   179篇
环保管理   213篇
综合类   1557篇
基础理论   479篇
污染及防治   902篇
评价与监测   112篇
社会与环境   95篇
灾害及防治   177篇
  2024年   1篇
  2023年   58篇
  2022年   163篇
  2021年   138篇
  2020年   91篇
  2019年   93篇
  2018年   109篇
  2017年   139篇
  2016年   149篇
  2015年   186篇
  2014年   196篇
  2013年   285篇
  2012年   244篇
  2011年   251篇
  2010年   193篇
  2009年   164篇
  2008年   188篇
  2007年   166篇
  2006年   131篇
  2005年   95篇
  2004年   84篇
  2003年   90篇
  2002年   86篇
  2001年   79篇
  2000年   64篇
  1999年   88篇
  1998年   73篇
  1997年   66篇
  1996年   57篇
  1995年   55篇
  1994年   29篇
  1993年   41篇
  1992年   33篇
  1991年   29篇
  1990年   14篇
  1989年   5篇
  1988年   10篇
  1987年   3篇
  1984年   4篇
  1982年   2篇
  1981年   2篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有3957条查询结果,搜索用时 31 毫秒
991.
为了探究不同暴露时间甲醛对小鼠哮喘模型肺氧化应激及IL-17表达的影响,用浓度为3.0 mg·m~(-3)的甲醛气体吸入染毒,同时将48只雄性Balb/c小鼠随机分为6组:(1)对照组(生理盐水组);(2)ovalbumin(OVA)致敏组;(3)0.5 h甲醛+OVA组;(4)1h甲醛+OVA组;(5)1.5 h甲醛+OVA组;(6)2 h甲醛+OVA组,以不同时间长度进行甲醛暴露,连续35 d。OVA致敏组、0.5 h甲醛+OVA组、1 h甲醛+OVA组、1.5 h甲醛+OVA组、2 h甲醛+OVA组均在第11、18及25天腹腔注射OVA致敏液(5 mg OVA+175 mg Al(OH)_3+30 mL生理盐水),第29~35天(共计1周)进行1%OVA雾化(30 min·d~(-1)),每日1次,诱发哮喘。第36天进行以下操作:取肺组织测定肺系数并制作肺匀浆,检测肺组织中活性氧自由基(ROS)、丙二醛(MDA)和还原型谷胱甘肽(GSH)的含量,并采用ELISA法检测肺组织中IL-17的水平。同时,采用HE染色法观察小鼠肺部气道的病理学变化。结果显示,在浓度为3.0 mg·m~(-3)的甲醛气体吸入染毒条件下,与对照组相比,1.5 h甲醛+OVA染毒组、2 h甲醛+OVA染毒组ROS、MDA、IL-17含量上升,具有统计学意义(P0.01)。同时,随着暴露时间长度的增加,小鼠肺部气道出现明显病理学变化。综上所述,每天2 h甲醛+OVA染毒能对小鼠肺造成损伤并恶化OVA对小鼠肺的损伤,产生炎症反应,并通过氧化应激反应介导。  相似文献   
992.
4种喹诺酮类抗生素对发光菌毒性作用研究   总被引:3,自引:0,他引:3  
分析了4种常见的喹诺酮类抗生素(QNs)对发光菌(Photobacterium phosphoreum)的单一毒性和等毒性比例下的联合毒性作用,基于毒性单位法(TU)、相加指数法(AI)和混合毒性指数法(MTI)评价混合体系联合毒性的作用类型。加替沙星、洛美沙星、左氧氟沙星和诺氟沙星4种喹诺酮类医药品对发光菌的半数效应浓度(EC50)分别为:0.084×10~(-3)、0.137×10~(-3)、0.129×10~(-3)和0.151×10~(-3)mol·L-1。不同的评价方法对4种QNs的联合效应评价结果具有较好的一致性,多元混合体系呈现为不同程度的拮抗作用。结合分子结构特征和不同取代基相互作用,初步分析了联合毒性机理,进一步的毒性作用机制还需通过对生物生理生化反应等进行深入研究。本研究多种QNs混合体系呈现拮抗作用为主,揭示了此类医药品在环境中的联合使用可能导致药效降低以及微生物耐药性的产生和传播。  相似文献   
993.
随着抗生素抗性污染日益严重,快速评估环境中典型病原菌与条件性致病菌的抗生素抗性水平,对掌握区域环境抗生素抗性污染状况、揭示抗性污染传播规律至关重要。通过以最低抑菌浓度浸入抗生素改进MI、VJ培养基,并结合滤膜法,建立了针对近岸海洋环境中指示性病原微生物大肠杆菌(Escherichia coli,E.coli)与金黄色葡萄球菌(Staphylococcus aureus,S.aureus)的抗生素抗性监测方法。水体和沉积物样品抗生素抗性水平评估实验结果显示,该方法具有较好重现性(水体和沉积物中E.coli和S.aureus抗生素抗性水平的相对标准偏差分别为11%、8%)与准确度(水体和沉积物中E.coli和S.aureus的平均回收率分别为83.5%、68.4%;相对于CLSI药敏试验的偏离度为±0.1)。且与CLSI药敏实验相比,该方法过程简便、耗时短(36 h/84 h),能最大限度节约经济和人员成本提高抗性评价效率。应用该方法评估辽河口与莱州湾环境中2种病原微生物磺胺类抗生素抗性水平,结果显示辽河口水体中E.coli和S.aureus磺胺二甲嘧啶的平均抗性率分别为27.0%、28.4%,沉积物中分别为35.5%、34.6%;莱州湾水体中E.coli和S.aureus磺胺二甲嘧啶的平均抗性率分别为26.0%、14.5%,沉积物中分别为12.0%、32.9%。该方法适用于河口、近岸海洋及入海排污口水体与沉积物样品中E.coli与S.aureus的快速分析及抗生素抗性水平评估。  相似文献   
994.
Exploration of heavy metals and organic pollutants, their leaching capacity along with health and environmental risks in contaminated industrial construction and demolition waste (ICDW) within a pesticide manufacturing plant were investigated. A maximum content of 90.8 mg?kg–1 Cd was found present in the wastes, which might originate from phosphorus rocks and industrial sulfuric acid used in pesticide production processes. An average concentration of 979.8 mg?kg–1 dichlorovos and other 11 organophosphorus pesticide were also detected. Relatively high leaching rates of around 4.14‰were obtained from laboratory simulated ICDW using both glacial acetic acid-sodium hydroxide and deionized water. Pesticide pollutants had the strongest tendency to retaining on dry bricks (leaching rate 1.68‰) compared to mortar-coatings, etc. due to their different physical characteristics and octanol-water partioning coefficient. Mobility of pesticide from on-site ICDW by water was spatially correlated to waste types, process sections and human activities, with a flux of leaching rate between 5.9‰ to 27.4%. Risk-based corrective action (RBCA) model was used to simulate the risk of contaminated ICDW debris randomly scattered. Oral and dermal ingestion amount by local workers was 9.8 × 10–3 and 1.9 × 10–2 mg?(kg?d)–1, respectively. Potential leaching risk to aquatic systems exceeded the limit for nearly 75% waste. Environmental and health risk exceedance was found in most ICDW, while the risk value of the most severely contaminated brick waste was 660 times beyond critical level. Implications for waste management involving construction and deconstruction work, waste transferring and regulation supplying were also provided.
  相似文献   
995.
The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide (yMn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N2 adsorption-desorption, H2-TPR, O2-TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities of yMn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the yMn5Cu/Ti- Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10–3 mmol·g–1·s–1 and the lowest T 50% and T 100% of 56°C and 86°C, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest O2 desorption temperature, and the highest surface Mn3+/Mn4+ atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of chemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.
  相似文献   
996.

CoFe2O4/ordered mesoporous carbon (OMC) nanocomposites were synthesized and tested as heterogeneous peroxymonosulfate (PMS) activator for the removal of rhodamine B. Characterization confirmed that CoFe2O4 nanoparticles were tightly bonded to OMC, and the hybrid catalyst possessed high surface area, pore volume, and superparamagnetism. Oxidation experiments demonstrated that CoFe2O4/OMC nanocomposites displayed favorable catalytic activity in PMS solution and rhodamine B degradation could be well described by pseudo-first-order kinetic model. Sulfate radicals (SO4 ·) were verified as the primary reactive species which was responsible for the decomposition of rhodamine B. The optimum loading ratio of CoFe2O4 and OMC was determined to be 5:1. Under optimum operational condition (catalyst dosage 0.05 g/L, PMS concentration 1.5 mM, pH 7.0, and 25 °C), CoFe2O4/OMC-activated peroxymonosulfate system could achieve almost complete decolorization of 100 mg/L rhodamine B within 60 min. The enhanced catalytic activity of CoFe2O4/OMC nanocomposites compared to that of CoFe2O4 nanoparticles could be attributable to the increased adsorption capacity and accelerated redox cycles between Co(III)/Co(II) and Fe(III)/Fe(II).

  相似文献   
997.

Zero-valent iron (Fe0) has been widely used for Cr(VI) removal; however, the removal mechanisms of Cr(VI) from aqueous solution under complex hydrogeochemical conditions were poorly understood. In this research, the mixed materials containing cast iron and activated carbon were packed in columns for the treatment of aqueous Cr(VI)-Cr(III) in groundwater with high concentration of Ca2+, Mg2+, HCO3 , NO3 , and SO4 2−. We investigate the influences of those ions on Cr(VI) removal, especially emphasizing on the reaction mechanisms and associated precipitations which may lead to porosity loss by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) techniques. The results show that the precipitations accumulated on the material surface were (Fe/Cr) (oxy)hydroxide, mixed Fe(III)-Cr(III) (oxy)hydroxides, Fe2O3, CaCO3, and MgCO3. During these reactions, the Cr(VI) was reduced to Cr(III) coupled with the oxidated Fe0 to Fe(II) through the galvanic corrosion formed by the Fe0-C and/or the direct electron transfer between Fe0 and Cr(VI). In addition, Cr(VI) could be reduced by aqueous Fe(II), which dominated the whole removal efficiency. The primary aqueous Cr(III) was completely removed together with Cr(III) reduced from Cr(VI) even when Cr(VI) was detected in the effluent, which meant that the aqueous Cr(III) could occupy the adsorption sites. In general, the combined system was useful for the Cr(VI)-Cr(III) treatment based on galvanic corrosion, and the hardness ions had a negative effect on Cr(VI) removal by forming the carbonates which might promote the passivation of materials and decrease the removal capacity of the system.

  相似文献   
998.
Environmental Science and Pollution Research - Brown carbon (BrC) has recently received much attention because of its light absorption features. The chemical compositions, optical properties, and...  相似文献   
999.
This study investigates the volatile organic compounds (VOCs) constituents and concentration levels on a new university campus, where all of the buildings including classrooms and student dormitories were newly built and decorated within 1 year. Investigated indoor environments include dormitories, classrooms, and the library. About 30 dormitory buildings with different furniture loading ratios were measured. The characteristics of the indoor VOCs species are analyzed and possible sources are identified. The VOCs were analyzed with gas chromatography–mass spectroscopy (GC-MS). It was found that the average total VOC (TVOC) concentration can reach 2.44 mg/m3. Alkenes were the most abundant VOCs in dormitory rooms, contributing up to 86.5% of the total VOCs concentration. The concentration of α-pinene is the highest among the alkenes. Unlike the dormitory rooms, there is almost no room with TVOC concentration above 0.6 mg/m3 in classroom and library buildings. Formaldehyde concentration in the dormitory rooms increased about 23.7% after the installation of furniture, and the highest level reached 0.068 mg/m3. Ammonia released from the building antifreeze material results in an average indoor concentration of 0.28 mg/m3, which is 100% over the threshold and should be seriously considered. Further experiments were conducted to analyze the source of the α-pinene and some alkanes in dormitory rooms. The results showed that the α-pinene mainly comes from the bed boards, while the wardrobes are the main sources of alkanes. The contribution of the pinewood bed boards to the α-pinene and TVOC concentration can reach up to above 90%. The same type rooms were sampled 1 year later and the decay rate of α-pinene is quite high, close to 100%, so that it almost cannot be detected in the sampled rooms.

Implications: Analysis of indoor volatile organic compounds (VOCs) in newly built campus buildings in China identified the specific constituents of indoor VOCs contaminants exposed to Chinese college students. The main detected substances α-pinene, β-pinene, and 3-carene originated from solid wood bed boards and should be seriously considered. In addition, the contribution rates of building structure materials and furniture to specific VOCs constituents are quantitative calculated. Also, the decay rates of these specific constituents within 1 year are also quantitative calculated in this paper. This study can help us to better understand the sources and concentration levels of VOC contaminants in campus buildings, and to help select appropriate materials in buildings.  相似文献   

1000.
王阳毅  高强  刘赛  葛明桥 《化工环保》2017,37(6):644-647
研究了亚铁盐中NO3-、SO42-、Cl-、Br-等阴离子对Fenton氧化降解高浓度聚乙烯醇(PVA)效果的影响。实验结果表明:酸性条件下具有氧化性的阴离子NO3-或能被氧化形成具有氧化性物质的离子Cl-、Br-对Fenton氧化降解PVA有协同促进作用,且氧化性越强越容易促使PVA大分子链断裂;含NO3-、Cl-、Br-和SO42-的Fenton氧化降解PVA,COD去除率分别为70.05%、70.60%、72.40%和87.90%。采用COD去除率相差不大、产物分子量较小的硝酸亚铁、氯化亚铁、溴化亚铁中的一种作为Fenton试剂催化降解PVA较适宜。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号