首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   2篇
  国内免费   2篇
安全科学   1篇
废物处理   6篇
环保管理   14篇
综合类   108篇
基础理论   41篇
污染及防治   52篇
评价与监测   9篇
社会与环境   4篇
灾害及防治   1篇
  2018年   4篇
  2017年   4篇
  2015年   3篇
  2014年   3篇
  2013年   9篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   11篇
  2007年   15篇
  2006年   9篇
  2005年   3篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   8篇
  1999年   3篇
  1998年   3篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1986年   3篇
  1985年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1967年   4篇
  1965年   4篇
  1964年   6篇
  1963年   5篇
  1962年   4篇
  1961年   3篇
  1960年   2篇
  1959年   4篇
  1958年   2篇
  1955年   3篇
  1954年   3篇
  1949年   2篇
  1942年   2篇
  1934年   3篇
  1931年   3篇
  1925年   2篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
91.
92.
93.
94.
95.
96.
Nature-based solutions (NBS) for mitigating climate change are gaining popularity. The number of NBS is increasing, but research gaps still exist at the governance level. The objectives of this paper are (i) to give an overview of the implemented NBS for flood risk management and mitigation in Germany, (ii) to identify governance models that are applied, and (iii) to explore the differences between these models. The results of a hierarchical clustering procedure and a qualitative analysis show that while no one-size-fits-all governance model exists, polycentricism is an important commonality between the projects. The study concludes by highlighting the need for further research on traditional governance model reconversion and paradigm changes. We expect the findings to identify what has worked in the past, as well as what is important for the implementation of NBS for flood risk management in future projects.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01412-x) contains supplementary material, which is available to authorized users.  相似文献   
97.
98.
Natural chemical weathering of silicate rocks is a significant sink for soil and atmospheric CO2. Previous work suggested that natural chemical weathering may be stimulated by applying finely ground silicate rocks to agricultural areas or forests [stimulated weathering (SW)]. However, it remained unknown if this technique is practical to sequester globally significant amounts of CO2 under realistic conditions. Applying first estimates of “normal treatment” amounts from a literature review, we report here a theoretical global maximum potential of 65 106 t sequestered C a−1 if SW would be applied homogenously on all agricultural and forested areas of the world. This is equivalent to 0.9% of anthropogenic CO2 emissions (reference period 2000–2005). First, however, the assumed application of SW on most of the considered areas is not economically feasible because of logistic issues, and second the net-CO2 sequestration is expected to amount to only a fraction of consumed CO2 due to the energy demand of the application itself (currently ~11%). Unless progress in application procedures is provided, the recent realistic maximum net-CO2-consumption potential is expected to be much smaller than 0.1% of anthropogenic emissions, and the SW would thus not be one of the key techniques to reduce atmospheric CO2 concentration. However, literature suggests that for some agricultural areas (croplands) and specifically for rice production areas in humid climates, this SW may be a feasible tool to support international efforts to sequester CO2. SW may be cost effective for those areas if linked to the CO2-emission certificate trade in the future, and increases in crop production are taken into account.  相似文献   
99.
Phthalates are ubiquitous environmental chemicals with potential detrimental health effects. The purpose of our study was to quantify dietary intake of phthalates and of DEHA (Di-ethylhexyl adipate) using duplicate diet samples and to compare these data with the calculated data based on urinary levels of primary and secondary phthalate metabolites. 27 female and 23 male healthy subjects aged 14-60 years collected daily duplicate diet samples over 7 consecutive days. Overall, 11 phthalates were measured in the duplicates by GC/MS and LC/MS methods. Urinary levels of primary and secondary phthalate metabolites are also available. The median (95th percentile) daily intake via food was 2.4 (4.0) microg/kg b.w. (Di-2-ethylhexyl phthalate, DEHP), 0.3 (1.4) microg/kg b.w. (Di-n-butyl phthalate, DnBP), 0.6 (2.1) microg/kg b.w. (Di-isobutyl phthalate, DiBP) and 0.7 (2.2) microg/kg b.w. for DEHA. MEPH (Mono-2-ethylhexyl phthalate) was detectable only in minor concentrations in the samples, thus conversion of DEHP to MEHP and dietary intake of MEHP were negligible. When comparing back-calculated intake data of the DEHP metabolites with dietary DEHP intake from the day before significant correlations were observed for most of the metabolites. No correlation was found for DnBP and only a weak but significant correlation for DiBP. The median and 95th percentile daily dietary intake of all target analytes did not exceed the recommended tolerable daily intake. Our data indicated that food was the predominant intake source of DEHP, whilst other sources considerably contributed to the daily intake of DnBP and DiBP in an adult population.  相似文献   
100.
Soils are a key component of the terrestrial carbon cycle as they contain the majority of terrestrial carbon. Soil microorganisms mainly control the accumulation and loss of this carbon. However, traditional concepts of soil carbon stabilisation failed so far to account for environmental and energetic constraints of microorganisms. Here, we demonstrate for the first time that these biological limitations might have the overall control on soil carbon stability. In a long-term experiment, we incubated 13C-labelled compost with natural soils at various soil carbon concentrations. Unexpectedly, we found that soil carbon turnover decreased with lower carbon concentration. We developed a conceptual model that explained these observations. In this model, two types of particles were submitted to random walk movement in the soil profile: soil organic matter substrate and microbial decomposers. Soil carbon turnover depended only on the likelihood of a decomposer particle to meet a substrate particle; in consequence, carbon turnover decreased with lower carbon concentration, like observed in the experiment. This conceptual model was able to simulate realistic depth profiles of soil carbon and soil carbon age. Our results, which are simply based on the application of a two-step kinetic, unmystify the stability of soil carbon and suggest that observations like high carbon ages in subsoil, stability of carbon in fallows and priming of soil carbon might be simply explained by the probability to be decomposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号