首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   14篇
安全科学   5篇
废物处理   13篇
环保管理   56篇
综合类   24篇
基础理论   117篇
污染及防治   42篇
评价与监测   17篇
社会与环境   12篇
灾害及防治   1篇
  2023年   5篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   16篇
  2014年   11篇
  2013年   18篇
  2012年   7篇
  2011年   20篇
  2010年   10篇
  2009年   10篇
  2008年   16篇
  2007年   12篇
  2006年   19篇
  2005年   7篇
  2004年   8篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   8篇
  1999年   3篇
  1998年   4篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1972年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有287条查询结果,搜索用时 421 毫秒
241.
As the owners of the majority of land in the U.K., farmers are well placed to contribute to renewable energy targets. Media coverage can both drive and reflect farmers’ views about renewable energy but has been largely unexplored to date. This article uses discourse analysis to examine the evolution of coverage of one form of renewable energy – on-farm wind – in the U.K. farming press from 1980 to 2013. We identified a diverse debate with five major discourses. On-farm wind turbines are alternatively represented as: profitable farm diversification opportunities; producers of clean energy; important for rural development and sources of conflict. Although press coverage predominantly encourages wind energy production, a further discourse advises farmers to ‘Proceed with Caution’. While emphasising images and values which have widespread affinity among U.K. farmers, the press have increasingly employed an economic frame, constructing wind energy generation as a farm diversification strategy. The most recent farming press coverage predominantly encourages an instrumental approach to wind energy, crowding out other (non-economic) rationales and marginalising local community concerns. This appears to reflect the financial orientation of recent policy support (particularly Feed-in Tariffs), and may have long-term costs in enabling sustainable energy production systems.  相似文献   
242.
It is difficult to quantify the range in source strength reduction (MdR) that may be attainable from in situ remediation of a dense nonaqueous‐phase liquid (DNAPL) site given that available studies typically report only the median MdR without providing insights into site complexity, which is often a governing factor. An empirical study of the performance of in situ remediation at a wide range of DNAPL‐contaminated sites determined MdRs for in situ bioremediation (EISB), in situ chemical oxidation (ISCO), and thermal treatment remedies. Median MdR, geometric mean MdR, and lower/upper 95 percent confidence interval for the mean were: 49x, 105x, 20x/556x, respectively, for EISB; 9x, 21x, and 4x/110x for ISCO; and 19x, 31x, and 6x/150x for thermal treatment. Lower MdR values were determined for large, complex sites and for sites with DNAPL pool‐dominated source zones. A feasibility analysis of partial DNAPL depletion is described for a pool‐dominated source zone. Back‐diffusion from low‐hydraulic conductivity units within a pool‐dominated source zone is shown to potentially sustain a secondary source for more than 1,000 years, indicating that aggressive source treatment may not reduce the remediation timeframe. Estimated plume response demonstrates there may be no reduction in cost associated with aggressive treatment, and little difference in risk reduction associated with the various alternatives. Monitored natural attenuation (MNA) for the source zone is shown to be a reasonable alternative for the pool‐dominated source zone considered in this example. It is demonstrated that pool‐dominated source zones with a large range in initial DNAPL mass (250 to 1,500 kg) may correspond to a narrow range in source strength (20 to 30 kg/year). This demonstrates that measured source strength is nonunique with respect to DNAPL mass in the subsurface and, thus, source strength should not be used as the sole basis for predicting how much DNAPL mass remains or must be removed to achieve a target goal. If aggressive source zone treatment is to be implemented due to regulatory requirements, strategic pump‐and‐treat is shown to be most cost effective. These remedial decisions are shown to be insensitive to a range of possible DNAPL pool conditions. At sites with an existing pump‐and‐treat system, a significant increase in mass removal and source strength reduction may be achieved for a low incremental cost by strategic placement of extraction wells and pumping rate selection. © 2014 Wiley Periodicals, Inc.  相似文献   
243.
Nanotechnology-infused products have begun to enter the market in spite of the fact that many sectors of society are still debating whether or not exposure to such products will result in detrimental side effects. Due to a lack of regulation of nanoproducts, it is difficult to track these products to assess how they interact with humans and the environment. Acknowledging this limitation, several studies are starting to investigate situations where individuals are exposed to nanoparticles in the workplace; it is to be noted that manufacturing of materials is the first stage in the product life cycle where exposure may occur. This paper reviews and discusses the potential societal implications associated with the manufacturing of nanoparticles: health concerns, workers’ perceptions, rights, ethics, and the role of policy and regulation. Scenarios are presented, possible implications are discussed, and recommendations are given for appropriate action. Finding the right solution to the identified implications represents a critical challenge. In summary, it is imperative that all stakeholders including industry, academia, government entities, and the public adopt a proactive attitude to ensure that nanotechnology matures in a sustainable manner.  相似文献   
244.
The remediation of per‐ and polyfluoroalkyl substances by injection of colloidal activated carbon (CAC) at a contaminated site in Central Canada was evaluated using various visualization and modeling methods. Radial diagrams were used to illustrate spatial and temporal trends in perfluoroalkyl acid (PFAA) concentrations, as well as various redox indicators. To assess the CAC adsorption capacity for perfluorooctane sulfonate (PFOS), laboratory Freundlich isotherms were derived for PFOS mixed with CAC in two solutions: (1) PFOS in a pH 7.5 synthetic water that was buffered by 1 millimolar NaHCO3 (Kf = 142,800 mg1‐a La/kg and = 0.59); and (2) a groundwater sample (pH = 7.4) containing PFOS among other PFAS from a former fire‐training area in the United States (Kf = 4,900 mg1‐a La/kg and a = 0.24). A mass balance approach was derived to facilitate the numerical modeling of mass redistribution after CAC injection, when mass transitions from a two‐phase system (aqueous and sorbed to organic matter) to a three‐phase system that also includes mass sorbed to CAC. An equilibrium mixing model of mass accumulation over time was developed using a finite‐difference solution and was verified by intermodel comparison for prediction of CAC longevity in the center of a source area. A three‐dimensional reactive transport model (ISR‐MT3DMS) was used to indicate that the CAC remedy implemented at the site is likely to be effective for PFOS remediation for decades. Model results are used to recommend remedial design and monitoring alternatives that account for the uncertainty in long‐term performance predictions.  相似文献   
245.
Simulation of back‐diffusion remediation timeframe for thin silt/clay layers, or when contaminant degradation is occurring, typically requires the use of a numerical model. Given the centimeter‐scale vertical grid spacing required to represent diffusion‐dominated transport, simulation of back‐diffusion in a 3‐D model may be computationally prohibitive. Use of a local 1‐D model domain approach for simulating back‐diffusion is demonstrated to have advantages but is limited to only some applications. Incorporation of a local domain approach for simulating back‐diffusion in a new model, In Situ Remediation‐MT3DMS (ISR‐MT3DMS) is validated based on a benchmark with MT3DMS and comparisons with a highly discretized finite difference numerical model. The approach used to estimate the vertical hydrodynamic dispersion coefficient is shown to have a significant influence on the simulated flux into and out of silt/clay layers in early time periods. Previously documented back‐diffusion at a Florida site is modeled for the purpose of evaluating the sensitivity of the back‐diffusion controlled remediation timeframe to various site characteristics. A base case simulation with a clay lens having a thickness of 0.2 m and a length of 100 m indicates that even after 99.96 percent aqueous TCE removal from the clay lens, the down‐gradient concentrations still exceed the MCL in groundwater monitoring wells. This shows that partial mass reduction from a NAPL source zone via in situ treatment may have little benefit for the long‐term management of contaminated sites, given that back‐diffusion will sustain a groundwater plume for a long period of time. Back‐diffusion model input parameters that have the greatest influence on remediation timeframe and thus may warrant more attention during field investigations, include the thickness of silt/clay lenses, retardation coefficient representing sorbed mass in silt/clay, and the groundwater velocity in adjacent higher permeability zones. Therefore, pump‐and‐treat systems implemented for the purpose of providing containment may have an additional benefit of reducing back‐diffusion remediation timeframe due to enhanced transverse advective fluxes at the sand/clay interface. Remediation timeframes are also moderately sensitive to the length of the silt/clay layers and transverse vertical dispersivity, but are less sensitive to degradation rates within silt/clay, contaminant solubility, contact time, tortuosity coefficient, and monitoring well‐screen length for the scenarios examined. ©2015 Wiley Periodicals, Inc.  相似文献   
246.
247.
ABSTRACT

Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM).

This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   
248.
Methane (CH4) is the dominant greenhouse gas emitted by animal agriculture manure. Since the gas is relatively insoluble in water, it is concentrated in discrete bubbles that rise through waste lagoons and burst at the surface. This results in lagoon emissions that are inhomogeneous in both space and time. Emissions from a midwestern dairy waste lagoon were measured over 2 weeks to evaluate the spatial homogeneity of the source emissions and to compare two methods for measuring this inhomogeneous emission. Emissions were determined using an inverse dispersion model based on CH4 concentrations measured both by a single scanning tunable diode laser (TDL) aimed at a series of reflectors and by flame ionization detection (FID) gas chromatography on line-sampled air. Emissions were best estimated using scanned TDL concentrations over relatively short optical paths that collectively span the entire cross-wind width of the source, so as to provide both the best capture of discrete plumes from the bursting bubbles on the lagoon surface and the best detection of CH4 background concentrations. The lagoon emissions during the study were spatially inhomogeneous at hourly time scales. Partitioning the inhomogeneous source into two source regions reduced the estimated emissions of the overall lagoon by 57% but increased the variability. Consequently, it is important to assess the homogeneity of a source prior to measurements and final emissions calculation.

Implications: Plans for measuring methane emissions from waste lagoons must take into account the spatial inhomogeneity of the source strength. The assumption of emission source homogeneity for a low-solubility gas such as CH4 emitted from an animal waste lagoon can result in significant emission overestimates. The entire breadth and length of the area source must be measured, preferably with multiple optical paths, for the detection of discrete plumes from the different emitting regions and for determining the background concentration. Other gases with similarly poor solubility in water may also require partitioning of the lagoon source area.  相似文献   
249.
Epidemiological studies of exposure to vegetation fire smoke are often limited by the availability of accurate exposure data. This paper describes a systematic framework for retrospectively identifying the cause of air pollution events to facilitate a long, multicenter analysis of the public health effects of vegetation fire smoke pollution in Australia. Pollution events were statistically defined as any day at or above the 95th percentile of the 24-hr average concentration of particulate matter (PM). These were identified for six cities from three distinct ecoclimatic regions of Australia. The dates of each event were then crosschecked against a range of information sources, including online newspaper archives, government and research agency records, satellite imagery, and aerosol optical thickness measures to identify the cause for the excess particulate pollution. Pollution events occurred most frequently during summer for cities in subtropical and arid regions and during winter for cities in temperate regions. A cause for high PM on 67% of days examined in the city of Sydney was found, and 94% of these could be attributed to landscape fire smoke. Results were similar for cities in other subtropical and arid locations. Identification of the cause of pollution events was much lower in colder temperate regions where fire activity is less frequent. Bushfires were the most frequent cause of extreme pollution events in cities located in subtropical and arid regions of Australia. Although identification of pollution episodes was greatly improved by the use of multiple sources of information, satellite imagery was the most useful tool for identifying bushfire smoke pollution events.  相似文献   
250.
In Kakadu National Park, a World Heritage property in the Australian monsoon tropics 250 km to the east of Darwin, a number of recent studies have shown that woody encroachment (expansion of woody communities) and densification (increased biomass in woody communities) has occurred in the last 40 years. The cause of this increase in woody biomass is poorly understood, but possibly associated with the control of invasive Asian water buffalo, trend to higher rainfall, and increased frequency of fires. Mangroves provide an important context to understand these landscape changes, given that they are unaffected by fire or feral water buffalo. We examine change in mangrove distribution in a series of coastal tropical swamps fringing Darwin, Northern Territory, Australia over a 30-year period using a series of 7 aerial photographs spanning 23 years from 1974 and a 2004 high-resolution satellite image. In late 1974, Darwin was impacted by an intense tropical cyclone. Vegetation at 3,000 randomly placed points was manually classified, and a multinomial logistic model was used to asses the impact of landscape position (coastal, intertidal, and upper-tidal) and swamp on mangrove change between 1974 and 2004. Over the study period, there was instability and slight mangrove loss at the coast, stability in the intertidal zone, and mangrove gain in the upper-tidal zone, with an overall increase in mangrove presence of 16.2% above the pre-cyclone distribution. A swamp that was impacted by drainage works for mosquito control and the construction of a sewage treatment plant showed a greater mangrove increase than the two unmodified swamps. The mangrove expansion is consistent with woody encroachment observed in nearby but ecologically distinct systems. Plausible causes for this change include changed local hydrology, changes in sea level, and elevated atmospheric CO2 concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号