首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  国内免费   2篇
安全科学   7篇
废物处理   10篇
环保管理   48篇
综合类   43篇
基础理论   26篇
污染及防治   46篇
评价与监测   12篇
社会与环境   7篇
灾害及防治   7篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   9篇
  2013年   20篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   10篇
  2008年   13篇
  2007年   11篇
  2006年   4篇
  2005年   11篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有206条查询结果,搜索用时 296 毫秒
101.
Using data from a variety of sources, land use and vegetation in Texas were mapped with a spatial resolution of approximately 1 km. Over 600 classifications were used to characterize the land use and land cover throughout the state and field surveys were performed to assign leaf biomass densities, by species, to the land cover classifications. The total leaf biomass densities associated with these land use classifications ranged from 0 to 556 g/m2, with the highest assigned total and oak leaf biomass densities located in central and eastern Texas. The land cover data were used as input to a biogenic emissions model, GLOBEIS2. Estimates of biogenic emissions of isoprene based on GLOBEIS2 and the new land cover data showed significant differences when compared to biogenic isoprene emissions estimated using previous land cover data and emission estimation procedures. For example, for one typical domain in eastern Texas, total daily isoprene emissions increased by 38% with the new modeling tools. These results may ultimately affect the way in which ozone and other photochemical pollutants are modeled and evaluated in the state of Texas.  相似文献   
102.
Alkenes are important in photochemical smog formation in southeast Texas due to their high emissions, especially from industrial sources in and around Houston, and their high reactivities. Therefore, properly characterizing the chemistry of alkenes in condensed mechanisms used in regional photochemical models is important in understanding the formation of ozone and other photochemical air pollutants in Houston. The performance of three versions of the SAPRC condensed chemical mechanism family, for predicting ozone and radical formation, was compared. Simulations were compared to environmental chamber data and ambient data. The analyses showed that separately modeling individual alkenes reactions (especially propene for southeast Texas) has the potential to lead to more accurate simulations of alkene chemistry. Caution must be exercised in un-lumping, however. Testing with different formulations of the 1-butene + O3 reaction demonstrated the complexity and interconnectedness in choices of stoichiometric parameters for un-lumped species and the extent to which lumped mechanisms are un-lumped.  相似文献   
103.
We studied the leaching and dissipation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-s-triazine) and its two principal metabolites (desethylatrazine and desisopropylatrazine) for more than two years through soil profiles at five forestry sites across Australia (representing subtropical, temperate and Mediterranean climatic conditions with rainfall ranging from 780 to 1536 mm yr?1). Following atrazine applications at local label rates, soil cores were collected at regular intervals (up to depths of 90–150 cm), and the residues of the three compounds in soil were analysed in composite samples using liquid chromatography. Bromide was applied simultaneously with atrazine to follow the movement of the soil water. While bromide ion rapidly leached through the entire profile, in most cases the bulk of atrazine, desethylatrazine and desisopropylatrazine remained in the top 45 cm of the soil profile. However, a small fraction of residue moved deeper into the soil profile and at a subtropical site (Toolara) trace levels (ng L?1) of atrazine and one of its metabolites (DEA) were detected in perched groundwater located at a depth of 1.8 m. Data on the total residues of atrazine in soil profiles from all sites except the Tasmanian site fitted a first-order decay model. The half-life of atrazine in surface soils at the subtropical sites (Toolara and Imbil) ranged from 11 to 21 days. Four separate applications of atrazine at Toolara resulted in a narrow range of half-lives (16 ± 3.6 days), confirming relatively rapid dissipation of atrazine under subtropical conditions (Queensland). In contrast, a prominent biphasic pattern of initial rapid loss followed by very slow phase of degradation of atrazine was observed under the colder temperate climate of Highclere (Tasmania). The data showed that while its 50% (DT50) loss occurred relatively rapidly (36 days), more than 10% of herbicide residue was still detectable in the profile even a year after application (DT90 = 375 days). The rate of dissipation of atrazine at warm subtropical Queensland sites (Imbil and Toolara) was 2–3 times faster than sites located in colder climate of Tasmania. The marked contrast in DT50 values between subtropical and temperate sites suggest that climatic conditions (soil temperature) is one of the key factors affecting atrazine dissipation. At the Tasmanian site, the combination of leaching of the herbicide in subsoil and slower microbial activity at cooler temperatures would have caused a longer persistence of atrazine.  相似文献   
104.
Escalating concerns about water supplies in the Great Basin have prompted numerous water budget studies focused on groundwater recharge and discharge. For many hydrographic areas (HAs) in the Great Basin, most of the recharge is discharged by bare soil evaporation and evapotranspiration (ET) from phreatophyte vegetation. Estimating recharge from precipitation in a given HA is difficult and often has significant uncertainty, therefore it is often quantified by estimating the natural discharge. As such, remote sensing applications for spatially distributing flux tower estimates of ET and groundwater ET (ETg) across phreatophyte areas are becoming more common. We build on previous studies and develop a transferable empirical relationship with uncertainty bounds between flux tower estimates of ET and a remotely sensed vegetation index, Enhanced Vegetation Index (EVI). Energy balance‐corrected ET measured from 40 flux tower site‐year combinations in the Great Basin was statistically correlated with EVI derived from Landsat imagery (r2 = 0.97). Application of the relationship to estimate mean‐annual ETg from four HAs in western and eastern Nevada is highlighted and results are compared with previous estimates. Uncertainty bounds about the estimated mean ETg allow investigators to evaluate if independent groundwater discharge estimates are “believable” and will ultimately assist local, state, and federal agencies to evaluate expert witness reports of ETg, along with providing new first‐order estimates of ETg.  相似文献   
105.
Continuous measurements of particle number concentrations were performed in Rochester, NY, and Toronto, Ontario, Canada during the 2003 calendar year. Strong seasonal dependency in particle number concentration was observed at two sites. The average number concentration of ambient particles was 9670 +/- 6960 cm(-3) in Rochester, whereas in Toronto the average number of particles was 28,010 +/- 13,350 cm(-3). The particle number concentrations were higher in winter months than in summer months by a factor of 1.5 in Rochester and 1.6 in Toronto. In general, there were also distinct diurnal variations of aerosol number concentration. The highest weekdays/weekends ratio of number concentration was typically observed during the rush-hour period in winter months with a ratio of 2.1 in Rochester and 2.0 in Toronto. The correlation in the total particle number concentrations between the two urban sites was stronger in winter because of the common urban traffic patterns, but weaker in summer because of local sulfur dioxide (SO2)-related particle formation events in Rochester in the summer. Strong morning particle formation events were frequently observed during colder winter months. Good correlations between particle number and carbon monoxide (CO) as well as temperature suggested that motorvehicle emissions lead to the formation of new particles as the exhaust mixes with the cold air. Regional nucleation and growth events frequently occurred in April. Local SO2-related particle formation events most frequently occurred in August. SO2 and UV-B were highly correlated with particle concentration, suggesting a high association of photochemical processes with these local events. A high directionality in a northerly direction was observed for particle number and SO2, indicating the influence of point sources located north of Rochester.  相似文献   
106.
107.
108.
109.
We developed a numerical model capable of simulating the spatial zonation of nutrient uptake in coral reef systems driven by hydrodynamic forcing (both from waves and currents). Relationships between nutrient uptake and bed stress derived from flume and field studies were added to a four-component biogeochemical model embedded within a three-dimensional (3-D) hydrodynamic ocean model coupled to a numerical wave model. The performance of the resulting coupled physical-biogeochemical model was first evaluated in an idealized one-dimensional (1-D) channel for both a pure current and a combined wave-current flow. Waves in the channel were represented by an oscillatory flow with constant amplitude and frequency. The simulated nutrient concentrations were in good agreement with the analytical solution for nutrient depletion along a uniform channel, as well as with existing observations of phosphate uptake across a real reef flat. We then applied this integrated model to investigate more complex two-dimensional (2-D) nutrient dynamics, firstly to an idealized coral reef-lagoon morphology, and secondly to a realistic section of Ningaloo Reef in Western Australia, where nutrients were advected into the domain via alongshore coastal currents. Both the idealized reef and Ningaloo Reef simulations showed similar patterns of maximum uptake rates on the shallow forereef and reef crest, and with nutrient concentration decreasing as water flowed over the reef flat. As a result of the cumulative outflow of nutrient-depleted water exiting the reef channels and then being advected down the coast by alongshore currents, both reef simulations exhibited substantial alongshore variation in nutrient concentrations. The coupled models successfully reproduced the observed spatial-variability in nitrate concentration across the Ningaloo Reef system.  相似文献   
110.
Mitigation of the heat island effect in urban New Jersey   总被引:1,自引:0,他引:1  
Implementation of urban heat island (UHI) mitigation strategies such as increased vegetative cover and higher-albedo surface materials can reduce the impacts of biophysical hazards in cities, including heat stress related to elevated temperatures, air pollution and associated public health effects. Such strategies also can lower the demand for air-conditioning-related energy production. Since local impacts of global climate change may be intensified in areas with UHIs, mitigation strategies could play an increasingly important role as individuals and communities adapt to climate change. We use CITYgreen, a GIS-based modeling application, to estimate the potential benefits of urban vegetation and reflective roofs as UHI mitigation strategies for case study sites in and around Newark and Camden, New Jersey.

The analysis showed that urban vegetation can reduce health hazards associated with the UHI effect by removing pollutants from the air. Less affluent, inner-city neighborhoods are the ones in which the hazard potential of the UHI effect is shown to be greatest. However, these neighborhoods have less available open space for tree planting and therefore a lower maximum potential benefit. As the climate warms, these neighborhoods may face greater consequences due to interactions between the UHI effect and global climate change. Results also show that urban vegetation is an effective and economically efficient way to reduce energy consumption and costs at the sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号