首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   0篇
  国内免费   11篇
安全科学   8篇
废物处理   26篇
环保管理   15篇
综合类   18篇
基础理论   52篇
污染及防治   89篇
评价与监测   7篇
社会与环境   5篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2019年   4篇
  2018年   11篇
  2017年   7篇
  2016年   4篇
  2015年   12篇
  2014年   13篇
  2013年   21篇
  2012年   5篇
  2011年   17篇
  2010年   9篇
  2009年   13篇
  2008年   18篇
  2007年   14篇
  2006年   13篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   10篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1982年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有220条查询结果,搜索用时 31 毫秒
71.
72.
Nanoscale zero-valent iron (NZVI) is considered to have potential to reduce nitrate in the concentrate generated by high pressure membrane processes aimed at water reuse. However, it is necessary to verify the effect of the matrix components in the concentrates on NZVI reactivity. In this study, the influence of hardness, alkalinity, and organic matter on NZVI reactivity was evaluated by the response surface method (RSM). Hardness (Ca/+) had a positive effect on NZVI reactivity by accelerating iron corrosion. In contrast, alkalinity (bicarbonate; HCO3) and organic matter (humic acid; HA) had negative effects on NZVI reactivity due to morphological change to carbonate green rust, and to competitive adsorption of HA, respectively. The validity of the statistical prediction model derived from RSM was confirmed by an additional confirmation experiment, and the experimental result was within the 95% confidential interval. Therefore, it can be indicated that the RSM model produced results that were statistically significant.  相似文献   
73.
Cytotoxicity of selected metal oxide nanoparticles(MNPs)(ZnO,CuO,Co 3 O 4 and TiO 2)was investigated in Escherichia coli both under light and dark conditions.Cytotoxicity experiments were conducted with spread plate counting and the LC 50 values were calculated.We determined the mechanism of toxicity via measurements of oxidative stress,reduced glutathione,lipid peroxidation,and metal ions.The overall ranking of the LC 50 values was in the order of ZnO < CuO < Co 3 O 4 < TiO 2 under dark condition and ZnO < CuO < TiO 2 < Co 3 O 4 under light condition.ZnO MNPs were the most toxic among the tested nanoparticles.Our results indicate depletion of reduced glutathione level and elevation of malondialdehyde level correlated with the increase in oxidative stress.Released metal ions were found to have partial effect on the toxicity of MNPs to E.coli.In summary,the dynamic interactions of multiple mechanisms lead to the toxicity of the tested MNPs to E.coli.  相似文献   
74.
Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms(HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products(DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds(QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC(Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol–gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10~(-3) log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure.The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall,the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment.  相似文献   
75.
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health.  相似文献   
76.
Suspension-feeding behavior of the adult barnacleSemibalanus balanoides (L.), collected at Woods Hole, USA, in 1987 and 1988, was studied in variable conditions of unidirectional and oscillating water flow. Barnacles growing on rocks were placed in a laboratory flume and exposed to precise patterns of water flow created with a specially designed electronic-circuit controlling a motor-driven propeller submersed in the flume. Laser darkfield and brightfield illumination were used to video-record the movement of suspended particles and dye in the flume and barnacle activity. When water was accelerated unidirectionally past feeding barnacles, they consistently changed feeding behavior from actively sweeping their thoracic appendages (cirri) through the water in slow-flow to passively holding cirri into the current in faster flow. The mean water velocity at which this behavioral switch occurred was 3.10 cm s–1. In slow-flow, each active sweep of the cirri created a feeding vortex that caused suspended particles to swirl into the capture zone of the following sweep. Barnacles in simulated wave-action conditions (oscillatory flow) fed passively, and orientated extended cirri to flow direction. Cirri were rapidly reoriented with the same frequency at which flow direction reversed. Slow-motion analysis of one barnacle feeding in oscillating flow (0.65 Hz) indicated that reversal of the orientation of the cirri began 0.19 s before the water itself started to reverse direction. In additional experiments, barnacles were exposed to a repetitive pattern of accelerating-decelerating flow. During each flow cycle, barnacles switched from active to passive feeding as water accelerated. Repeated exposure of an individual to the same flow-cycle caused a consistent decrease in the water-velocity threshold at which the behavioral switch occurred.  相似文献   
77.
A heavy metal contaminated soil sample collected from a mine in Chonnam Province of South Korea was found to be a source of heavy metal adsorbing biosorbents. Chemical analyses showed high contents of lead (Pb) at 357 mg/kg and cyanide (CN) at 14.6 mg/kg in the soil. The experimental results showed that Penicillium sp. MRF-1 was the best lead resistant fungus among the four individual metal tolerant fungal species isolated from the soil. Molecular characterization of Penicillium sp. MRF-1 was determined using ITS regions sequences. E ects of pH, temperature and contact time on adsorption of Pb(II) by Penicillium sp. MRF-1 were studied. Favorable conditions for maximum biosportion were found at pH 4 with 3 hr contact time. Biosorption of Pb(II) gradually increased with increasing temperature. E cient performance of the biosorbent was described using Langmuir and Freundlich isotherms. Adsorption kinetics was studied using pseudo first-order and pseudo second-order models. Biosorbent Penicillium sp. MRF-1 showed the maximum desorption in alkali conditions. Consistent adsorption/desorption potential of the biosorbent in repetitive cycles validated the e cacy of it in large scale. SEM studies given notes on surface modification of fungal biomass under metal stress and FT-IR results showed the presence of amino groups in the surface structure of the biosorbent. In conclusion, the new biosorbent Penicillium sp. MRF-1 may potentially be used as an inexpensive, easily cultivatable material for the removal of lead from aqueous solution.  相似文献   
78.
Objective: In some countries, per se laws for other drugs than alcohol are used to judge drunk and drugged drivers. These blood concentration limits are often derived from experimental studies on traffic relevant behavior of healthy volunteers. Knowledge about how results from experimental studies could be transferred to a real-life setting is missing. The aim of this study was to compare impairment seen in experimental studies to the impairment seen at equivalent concentrations in apprehended drunk and drugged drivers.

Methods: Results from previously performed meta-analyses of experimental studies regarding impairment from alcohol, tetrahydrocannabinol (THC), and benzodiazepines were compared to impairment in apprehended drunk and drugged drivers as judged by a clinical test of impairment. Both experimental studies and real-life cases were divided into 4 groups according to increasing blood drug concentration intervals. The percentage of impaired test results in experimental studies was compared to the percentage of impaired subjects among drivers within the same blood drug concentration window.

Results: For ethanol, the percentage of impaired drivers (n = 1,223) increased from 59% in the lowest drug concentration group to 95% in the highest drug concentration group, compared to 7 and 72% in the respective groups in experimental studies. For THC, the percentage of impaired drivers (n = 950) increased from 42 to 58%, the corresponding numbers being 11 and 42% for experimental studies. For benzodiazepines, the percentage of impaired drivers (n = 245) increased from 46 to 76%, the corresponding numbers being 16 and 60% for experimental studies. The increased odds ratio for impairment between 2 concentration groups was comparable for experimental studies and impaired drivers.

Conclusions: Fewer test results indicated impairment in experimental studies compared to impaired drivers in real life when influenced by similar blood concentrations of either ethanol, THC, or benzodiazepines. In addition, a comparable relationship between drug concentration and impairment was seen for both experimental studies and real-life cases.

We believe that the present study strengthens the background for using experimental studies to establish fixed concentration limits for drunk and drugged drivers, but experimental studies in an impaired driver population could further expand our knowledge.  相似文献   

79.
Sedimentation of metals preserves historical records of contaminant input from local and regional sources, and measurement of metals in sediment cores can provide information for reconstruction of historical changes in regional water and sediment quality. Sediment core was collected from Stege Marsh located in central San Francisco Bay (California, USA) to investigate the historical input of trace metals. Aluminum-normalized enrichment factors indicate that inputs from anthropogenic sources were predominant over natural input for Ag, Cu, Pb, and Zn. Among these, lead was the most anthropogenically impacted metal with enrichment factors ranging from 32 to 108. Depth profiles and coefficients of variation show that As, Cd, and Se were also influenced by anthropogenic input. The levels of these anthropogenically impacted metals decline gradually towards the surface due to regulation of the use of leaded gasoline, municipal and industrial wastewater discharge control, and closure of point sources on the upland of Stege Marsh. Although trace metal contamination is expected to be continuously declining, the rates of decline have slowed down. For lead, it is estimated to take 44, 82, and 153 years to decrease to probable effects level (112 μg/g), the San Francisco Bay ambient surface sediment level (43.2 μg/g), and the local baseline levels (5 μg/g), respectively. Some metals in surface sediments (0–6 cm) are still higher than sediment quality guidelines such as the probable effects level. To further facilitate the recovery of sediment quality, more efficient management plans need to be developed and implemented to control trace metals from non-point sources such as stormwater runoff.  相似文献   
80.
This study evaluates the effect of air pollution caused by cement plants on nearby residential areas and performs an exposure assessment of particulate matter (PM) and total Cr, Cr6+, Pb, and Al. Further, the blood Cr levels of residents exposed to PM released by cement plants are also assessed. Nine buildings (eight residential and one elementary school building) close to cement plants were selected for this study, which were located in Pyeongtaek port, in west of Gyeonggi Province, South Korea. A total of 51 suspended particulate samples were collected at a flow rate of 2.0 L/min. Total Cr was more widely detected in residents’ houses and elementary schools. PM levels were higher at distances of 4.1 and 4.8 km than those at closer distances of 2.7 km. This was due to the influence of wind direction. The estimated mean blood level of Cr for the study participants was 3.80 μg/L, which is higher than levels estimated by other studies on Cr blood levels. Therefore, cement plants could cause an increase in total Cr and blood Cr levels in residential areas, and more continuous monitoring is necessary to better understand their impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号