首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   2篇
  国内免费   13篇
安全科学   17篇
废物处理   27篇
环保管理   21篇
综合类   74篇
基础理论   49篇
污染及防治   98篇
评价与监测   22篇
社会与环境   4篇
灾害及防治   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   11篇
  2017年   8篇
  2016年   18篇
  2015年   3篇
  2014年   11篇
  2013年   19篇
  2012年   18篇
  2011年   24篇
  2010年   12篇
  2009年   18篇
  2008年   17篇
  2007年   19篇
  2006年   20篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1997年   2篇
  1996年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1976年   2篇
  1970年   2篇
  1966年   3篇
  1964年   2篇
  1962年   1篇
  1960年   1篇
  1959年   2篇
  1958年   1篇
  1957年   2篇
  1956年   2篇
  1955年   1篇
  1954年   2篇
  1952年   1篇
  1950年   1篇
  1948年   1篇
  1942年   1篇
  1940年   1篇
  1939年   1篇
  1936年   1篇
  1930年   1篇
  1927年   1篇
排序方式: 共有313条查询结果,搜索用时 887 毫秒
291.
In terms of energy use, it is wellknown that energy intensity in the manufacturingsector is higher than any other sector. In Korea, theenergy intensity of the manufacturing sector hasdeteriorated since the late 1980s. This phenomenonis quite unique compared with the trend of energyintensity in other countries. In this study, weclosely examine the structural composition of Korea'smanufacturing sector from 1981 to 1996, its energyintensity, and its implications for carbon dioxide(CO2) emissions by introducing the measurement ofreal energy intensity.The conventional index of energy intensity is notappropriate for aggregate industries. Since theaggregation of industries in the manufacturing sectorincludes structural change, it would be better toseparate the effect of structural change. Hence, inthis study, we apply a decomposition methodology forenergy intensity based on the `Divisia Index'. Ateach industry level, energy intensity is a mixedmeasurement of pure energy efficiency improvement andfuel substitution. We also calculate real energyintensity at each industry level. Based on ouranalysis, we derive carbon dioxide (CO2) intensity and analyze the factors that affect CO2 emission in this sector.During 1988–1993, the energy intensity of themanufacturing sector in Korea deteriorated. Industrial structural change,the real energy intensity in this sector became evenworse during this period. The primary reason for thisphenomenon was that the share of energy intensiveindustries, such as steel, cement, and petro-chemicalindustries increased. Second, during the sameperiod, liquefied natural gas (LNG) rapidlypenetrated this sector, so that theCO2 intensity improved. We find thatharmonization of economic development strategies andenvironmental consideration is crucial for sustainabledevelopment. Based on our study, we derived somepolicy implications. Integration of industrialpolicies and energy efficiency improving programs isquite important, as well as the acceleration of fuelsubstitution to less carbon (C) intensive ones. Integration of local and global environmental policiesplays an important role for mitigatingCO2 emissions.  相似文献   
292.
293.
294.
295.
296.
297.
298.
ABSTRACT: A reliable forecasting model is essential in real‐time flood forecasting for reducing natural damage. Efforts to develop a real‐time forecasting model over the past two decades have been numerous. This work applies the Grey model to forecast rainfall and runoff owing to the model's relative ability to predict the future using a small amount of historical data. Such a model significantly differs from the stochastic and deterministic models developed previously. Ten historical storm events from two catchment areas in northern Taiwan are selected to calibrate and verify the model. Results in this study demonstrate that the proposed models can reasonably forecast runoff one to four hours ahead, if the Grey error prediction method is further used to update the output of the model.  相似文献   
299.
Lead (Pb) contents and partition in soils collected from eleven vegetable-growing lands in Fujian Province, China, were investigated using a modification of the BCR (Community Bureau of Reference) sequential extraction procedure coupled with the Pb isotope ratio technique. Pb contents in Chinese white cabbage (B. Chinensis L.) grown on the lands for this study were also measured. Results showed that Pb concentrations in fifty samples of topsoil ranged from 456 to 21.5 mg kg−1, with each mean concentration of six sampling lands exceeding the national standard (50 mg kg−1); while Pb concentrations in edible portions of thirty-two vegetable samples ranged from 0.009 to 2.20 mg kg−1, with four sampling sites exceeding the national sanitary standard (0.2 mg kg−1). A significant correlation (r = 0.971, P < 0.01) of Pb contents in the acid-extractable fractions by BCR approach and the vegetables was observed, which indicates that the acid-extractable Pb is useful for evaluating the metal bioavailability for plants and potential risk for human health in soils. The determination of lead isotope ratios in different chemical forms of soils by BCR sequential extraction procedures provides useful information on the Pb isotopic composition associated with different soil fractions (especially in the acid-extractable fractions), and the result is helpful for the further study on controlling and reducing Pb contamination in vegetable-growing soils.  相似文献   
300.
Environmental concerns have been raised that suspended solids in turbid water adversely affect human health, and that their removal increases in the cost of water treatment. The Yongdam dam reservoir, located in the southwestern region of Korea, is severely affected by inflowing turbid water after storms. In this study, soil samples were collected from 37 sites in the Yongdam upstream basin to investigate mineralogical and environmental factors associated with the turbidity potential of soils in water environments. Turbidity potential was estimated by measuring the turbidity of soil-suspension solutions after settling for 24 h. The mineralogy of the soils was dominated by four minerals—quartz, microcline, albite, and muscovite—with lesser amounts of hornblende, chlorite, kaolinite, illite, and mixed layer illite. The quartz content was the most variable of the soil mineralogy among the collected samples. Principal-components analysis (PCA) was used to examine relationships between turbidity potential and other soil properties. The variables considered in the PCA included turbidity potential, quartz content, albite content, mean size of soil particles, clay content, clay mineral content, zeta potential, conductivity, and pH of the soil-suspension solution. The first two components of the PCA explained 52% of the overall variation of the selected variables. The first component was possibly explained by physical properties such as the size of the soil particles; the second was correlated with chemical properties of the soils, for example dissolution and extent of weathering. Closer examination of the PCA results revealed that the quartz content of the soils was negatively correlated with their turbidity potential. A linear correlation (r = 0.63) was obtained between measured turbidity potential and that predicted using multiple regression analysis based on the content of clay-sized particles, clay minerals, and quartz, and the conductivity of the soil-suspension solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号