Poultry litter generated on the Delmarva Peninsula is from phytase-modified bird diet and bisulfate amendment. To establish agronomic application rates in conservation tillage systems, bisulfate-amended phytase-diet poultry litter was investigated for its nutrient release kinetics and supply capacity under simulated weathering conditions. Delmarva poultry litter was packed in PVC columns (15 cm i.d. × 25 cm height) to a depth of 5 cm and leached intermittently with 600 mm of water for 190 days. Concentrations of various nutrients in leachate were analyzed and nutrient release kinetics were modelled. Poultry litter leachate contained high contents of dissolved organic carbon (DOC, 35–11,800 mg L?1), nitrogen (N 6–2690 mg L?1), phosphorus (P 45–225 mg L?1), potassium (K 20–6060 mg L?1), and other nutrients. Release of the nutrients occurred primarily in the starting 5 weeks and mostly followed a first order Exponential-Rise-to-Maximum model. Under the specified conditions, the poultry litter demonstrated a nutrient supply capacity of 11.7 kg N Mg?1, 5.4 kg P Mg?1, and 36.8 kg K Mg?1. Release of the potentially plant-available N and K was nearly finalized within 190 days of leaching/weathering, but it would require two years for full release of the leachable P. The results indicate that with consideration of field conditions, surface application of bisulfate-amended phytase-diet Delmarva poultry litter at recommended 6.6 Mg ha?1 to conservation tillage systems would largely provide P 25.0 kg ha?1, N 106.6 kg ha?1, and K 245.5 kg ha?1 to seasonal crops. 相似文献
To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k20 (the first-order rate constant at 20 °C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k20, k20s (first-order rate coefficient of slow fraction of BVS at 20 °C) of the sewage sludge were estimated as 0.082 and 0.015 d?1, respectively. 相似文献
Recycled poly(ethylene terephthalate) (R-PET) was blended with 15–30 wt% of styrene–ethylene/butylenes–styrene (SEBS) block
copolymer and maleic anhydride grafted SEBS (SEBS-g-MA). Effects of nucleation and toughening of the elastomers were evaluated
systematically by study of morphology, crystallization, thermal and mechanical properties of the blend. The addition of 30 wt%
SEBS promoted the formation of co-continuous structure of the blend and caused the fracture mechanism to change from strain
softening to strain hardening. Addition of SEBS-g-MA resulted in significant modification of phase morphology and obviously
improved the impact strength. The compatibilization reaction of PET with SEBS-g-MA accelerated the crystallization of PET
and increased the crystallinity. The shifts in glass transition temperature of PET towards that of SEBS-g-MA and the higher
modulus for R-PET/SEBS-g-MA (70/30) blend found by DMA are also indications of better interactions under the conditions of
compatibilization and interpenetrating structure. 相似文献
A major challenge in recycling of silicon powder from kerf loss slurry waste is the complete removal of metal particles. The traditional acid leaching method is costly and not green. In this paper, a novel approach to recover high-purity Si from the kerf loss slurry waste of solar grade silicon was investigated. The metal impurities were removed with superconducting high gradient magnetic separation technology. The effects of process parameters such as magnetic flux density, slurry density, and slurry flow velocity on the removal efficiency were investigated, and the parameters were optimized. In one lot of control experiments, the silicon content was increased from 90.91 to 95.83%, iron content reduced from 3.24 to 0.57%, and aluminum content from 2.44 to 1.51% under the optimum conditions of magnetic flux density of 4.0 T, slurry density of 20 g/L, and slurry flow velocity of 500 mL/min. The result indicates that the superconducting high gradient magnetic separation technology is a feasible purifying method, and the magnetic separation concentrate could be used as an intermediate product for high-purity Si powder.
Journal of Polymers and the Environment - Heavy metal pollution stems from the modern industry is a severe environmental problem. In this work, a highly efficient adsorbent based on starch-graphene... 相似文献