Knowledge of radionuclide or trace element retention and translocation to plants following an aerial contamination event, for example, sprinkling with contaminated water, is necessary for the evaluation of human exposure through consumption of contaminated vegetables. The fate of 63Ni and 109Cd in all plant parts of three different vegetables after wet deposition on leaves or on fruits was studied. Lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and bean (Phaseolus vulgaris L.) grown under controlled conditions in a growth chamber were contaminated with 63Ni and 109Cd either on leaves, by means of two different contamination methods (a single early contamination and a repetitive one), or on bean husks (third contamination method: a single contamination at a late stage). Spiked and nonspiked organs were harvested at maturity and radionuclide contents were measured. The fraction retained was on average 56% of the initially administered doses of 63Ni and 87% of 109Cd. The leaf-to-other organ translocation factor was considerably higher for 63Ni (on average 43% of retained radioactivity) than for 109Cd (8%). Nickel-63 migrated throughout the whole plant following foliar contamination, and mainly toward young leaves, seeds in formation, and sink organs, whereas 109Cd migrated to a much lesser extent and only to the organs that were closest to the spiked one, and not at all into fruit. After a fruit contamination event, both radionuclides were translocated into the seeds of spiked fruits. Radionuclide retention and translocation were not affected by plant species, but principally by the type of organ contaminated. 相似文献
Silicon-based fertilizers and soil amendments can have direct and indirect positive influences on cultivated plants. The solid forms of Si-based substances, the most widespread in use, are efficient only at high application rates due to their low level of solubility. Several types of Si-based substances such as fumed silica, slags from the iron and steel industry, modified slags, and a Si-rich product were tested using barley and pea as silicon accumulative and non-accumulative plants, respectively, at two application rates. The plants were grown under toxic concentrations of heavy metals in a greenhouse. Si-rich materials high in water-soluble Si had a positive effect at both the low and high application rates, and for both plant species. This type of substance can be regarded as Si fertilizer, demonstrating greater efficiency at a low application rate and lessened efficiency at a high application rate for protection of the cultivated plants against accumulation of the heavy metals.
We wanted to test the hypothesis that forest exposure to phytotoxic gases indirectly affects their carbon uptake. We estimated that the reduction of photosynthesis may have reached 20 to 30% at a site located 9 km (test site) from the Horne copper smelter in Rouyn-Noranda, which is a point source of SO2. Twenty-one spruce trees older than 100 yr were selected from seven sites at various distances from the smelter to evaluate conditions prior to and during the periods of smelter operation. The carbon isotope results obtained from spruce tree rings at our test site reveal an unprecedented and abrupt shift of +4/1000 after the onset of smelter operations. This large and permanent shift exceeds natural variations in regional pre-smelter series or in the series at a remote control site. All trees up to 116 km downwind from the smelter show delta13C positive shifts following the onset of operations. There is also a clear inverse relationship between the amplitude of the first-order trends and distance from the smelter. Those delta13C trends indicate that trees exposed to high levels of SO2 decrease their level of CO2 uptake through activation of stomatal closure. This is strongly supported by the significant departure of the Rouyn-Noranda trends from those measured for trees from non-industrialized areas of the Northern Hemisphere, or calculated using global atmospheric conditions. Considering the large number of SO2 point sources in North America, our results imply that CO2 uptake by the boreal forest in the vicinity of these sources may be lower than previously thought. 相似文献
This paper reports the concentrations of metals (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, and/or Zn) and selenium (Se) in kidney and/or liver samples from capercaillie (Tetrao urogallus), willow ptarmigan (Lagopus lagopus), hares (Lepus timidus), common shrews (Sorex araneus) and grey-sided voles (Clethrionomus rufocanus) from the Norwegian areas most heavily contaminated by pollutants from the Russian smelters on the Kola peninsula. In addition to comparing areas that differed in expected pollution rate within Sør-Varanger, comparisons are drawn with reference data from other parts of Norway. The relatively highest levels of metals were found for Cu and Ni in the sub-area most heavily exposed to pollution from the smelters. Also the highest Cr concentrations were found in the areas closest to the smelters. In this study, there is evidence for a direct link between increased metal concentrations in wild animals and pollution from the Russian smelters for Cu and Ni and to some extent for Cr. relatively high concentration of Hg and slight increases in Pb are also documented, but regional differences within Sør-Varanger indicate no direct relationship to the Russian smelters. No samples showed concentrations of any of the analysed metals in excess of the limits where negative effects on animals can be measured. 相似文献
This paper examines the applicability of market-based incentives for controlling emissions of particulate matter from fixed sources, in a developing-country context. It uses Santiago, Chile as a case study. A linear programming model has been developed to establish the costs of achieving different air quality targets using marketable permits and command-and-control (CAC) policies. The main conclusion is that an ambient permit system (APS) substantially reduces compliance costs of achieving a given air quality target at each receptor location in the city. Consequently, the use of permits is warranted. However, spatial differentiation of permits is required, thus complicating the design and use of such an instrument. Moreover, the reduction in compliance costs under APS is significantly less when the air quality targets imposed for each receptor location are the same as those achieved by other CAC policies. 相似文献
The distribution and abundance of deep-water gorgonian corals were investigated along 52 transects at 183–498 m depth in the Northeast Channel, between Georges Bank and Browns Bank in the northwest Atlantic, using a remotely operated vehicle and a towed video-camera system. Three species (Paragorgia arborea, Primnoa resedaeformis, and Acanthogorgia armata) were observed. Primnoa occurred on 35 transects below 196 m depth, with highest local abundance in stands of 104 colonies per 100 m2. Paragorgia was present on 21 transects deeper than 235 m, with highest local abundance of 49 colonies per 100 m2. Acanthogorgia was observed at only four transects between 231 m and 364 m, with a local maximum abundance of 199 colonies per 100 m2. The maximum abundance averaged for whole transects was 19.2 and 6.2 colonies per 100 m2 for Primnoa and Paragorgia, respectively. The corals were more common in the outer part of the channel along the shelf break and slope than on the shelf in the inner part. All three species showed a patchy distribution with no signs of competitive exclusion at any spatial scale. Transects with high abundance of corals were characterised by depths greater than 400 m, maximum temperatures less than 9.2°C, and a relatively high percentage coverage of cobble and boulder (more than 19% and 6%, respectively). High temperatures probably control the upper depth limit of the corals, and Primnoa seems to tolerate slightly higher temperatures than Paragorgia. Abundance of both species was negatively correlated with average temperature and positively with cobbles. Together, temperature, percentage cobble and salinity accounted for 38% of the variance of Primnoa. The comparable figure for Paragorgia was 15%. The observed distribution indicated that the abundance of coral is controlled by additional factors such as larger-scaled topographic features governing the current regimes and thus also the supply of food and larvae.Communicated by R. J. Thompson, St. Johns 相似文献