首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3925篇
  免费   5篇
  国内免费   93篇
安全科学   65篇
废物处理   169篇
环保管理   355篇
综合类   439篇
基础理论   212篇
污染及防治   1999篇
评价与监测   493篇
社会与环境   257篇
灾害及防治   34篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2017年   6篇
  2016年   2篇
  2015年   6篇
  2013年   3篇
  2012年   376篇
  2011年   483篇
  2010年   49篇
  2009年   111篇
  2008年   435篇
  2007年   478篇
  2006年   314篇
  2005年   300篇
  2004年   273篇
  2003年   219篇
  2002年   227篇
  2001年   165篇
  2000年   101篇
  1999年   57篇
  1998年   22篇
  1997年   18篇
  1996年   19篇
  1995年   17篇
  1994年   23篇
  1993年   13篇
  1992年   18篇
  1991年   17篇
  1990年   31篇
  1989年   15篇
  1988年   22篇
  1987年   26篇
  1986年   7篇
  1985年   27篇
  1984年   16篇
  1983年   20篇
  1982年   17篇
  1981年   15篇
  1980年   18篇
  1979年   10篇
  1978年   6篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   8篇
  1973年   3篇
排序方式: 共有4023条查询结果,搜索用时 15 毫秒
21.
Sun J  Hu J  Peng H  Shi J  Dong Z 《Chemosphere》2012,87(1):37-42
Increasing antibacterial resistance and pathogenicity in the environment is of growing concern due to its potential human risk. In the present study, 236 Escherichia coli isolates were collected from Wenyu River in China on drugless (48 isolates) and quinolone-containing plates (189 isolates). Their minimum inhibitory concentrations (MICs) were determined ranging from 0.125 μg mL−1 to 128 μg mL−1. Mutation points related to fluoroquinolone resistance were observed at S83 to L and D87 to N or Y in the GyrA subunit and S80 to R or I and E84 to G in the ParC subunit. Generally, MICs of LEV and GAT are dependent on the patterns of these mutation points. The profile with three mutation points was related to LEV-resistant E. coli isolates, and the (S83L, D87N + S80I) mutation profile was most prevalent (65.7%) in LEV-resistant isolates, while a large proportion of isolates, even those with three mutation points, were susceptive to GAT. The incidence of virulence factors in LEV-resistant isolates (44.7%, 59/132) was much higher than in nonresistant isolates (23.1%, 24/104) (χ2 = 11.925, 1° of freedom, p < 0.001) indicating that fluoroquinolone-resistant E. coli would pose a potential risk. A similar distribution was also found in isolates resistant to GAT (χ2 = 7.843, 1° of freedom, = 0.0079).  相似文献   
22.
23.
Modern dairies cause the accumulation of considerable quantity of dairy manure which is a potential hazard to the environment. Dairy manure can also act as a principal larval resource for many insects such as the black soldier fly, Hermetia illucens. The black soldier fly larvae (BSFL) are considered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL are a common colonizer of large variety of decomposing organic material in temperate and tropical areas. Adults do not need to be fed, except to take water, and acquired enough nutrition during larval development for reproduction. Dairy manure treated by BSFL is an economical way in animal facilities. Grease could be extracted from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel. The digested dairy manure was hydrolyzed into sugar. In this study, approximately 1248.6 g fresh dairy manure was converted into 273.4 g dry residue by 1200 BSFL in 21 days. Approximately 15.8 g of biodiesel was gained from 70.8 g dry BSFL, and 96.2 g sugar was obtained from the digested dairy manure. The residual dry BSFL after grease extraction can be used as protein feedstuff.  相似文献   
24.

Background and purpose

Besides the opportunities for reuse, stringent regulations and growing public awareness demand an enhanced quality of effluent from dye industries. Treatment of an aqueous solution of dye (reactive red 198) was carried out in a nanofiltration unit using both flat sheet and spiral wound modules to obtain a comparative performance evaluation in terms of permeate flux and quality.

Methods

Hydrophilized polyamide membrane with molecular weight cutoff of 150 was used for the experiments. Effects of trans-membrane pressure (TMP), feed concentration and addition of salt on permeate flux were investigated. Percent reduction of color, chemical oxygen demand (COD), total dissolved solid (TDS), and conductivity were determined to assess performance of the membrane.

Results

The maximum flux decline was 16.1% of its initial value at 490 kPa TMP with 50 ppm feed concentration in spiral wound module, whereas the same in flat sheet under same conditions was 7.2%. The effect of TMP showed a quasi-linear increase in flux with increasing pressure. Increased permeate concentration led to the reduction in observed retention of dye in the membrane. The average reduction in color, COD, and TDS were 96.88%, 97.38%, and 89.24%, respectively. The decline in permeate flux was more in case of spiral wound module compared to flat sheet. However, spiral wound module performed better in terms of color removal, COD reduction, and TDS removal.

Conclusion

Substantial removal of color was achieved in the nanofiltration experiments with a marked reduction in COD and TDS. The process allowed the production of permeate stream with great reutilization possibilities.  相似文献   
25.
最近几年来又有许多新的或作用强烈的化学药品进入了自然界的物质组成代谢中,其中有一些是非生物材料,它们能够通过多种方式影响有机体的生理作用。汞、镉和铅都属于这类金属元素,但它们的重要生物功能迄今尚未研究.自从1969年日本发生了由于镉的慢性吸收而引起的举世闻名的痛痛病  相似文献   
26.
The fine roots and myocorrhizae of beech, spruce and fir trees exposed to ozone, sulphur dioxide and simulated acid precipitation in open-top chambers (OTC) were examined both in situ by rhizoscopy and in the laboratory using root samples from soil cores. Prior to measurements the trees were treated for about one year. During the second year of treatment the fine root production of all three tree species was determined rhizoscopically. The OTC experiments were concluded after an additional three years at which time fine root and small root dry matter as well as the absolute and relative frequencies of mycorrhizae of spruce and fir were determined from soil cores. The vitality of spruce mycorrhizae was examined by fluorescein diacetate staining. In addition total contents of essential cations of spruce mycorrhizae were measured. Long-term exposure to SO(2), SO(2) + O(3), and simulated acid precipitation led to an increased mycorrhizal production by fir. On spruce, a decreased number of mycorrhizae was found in the chambers polluted with SO(2), but a high proportion of dead fine roots indicated an increased root production with an intensified turnover or a delayed decomposition of spruce mycorrhizae. The cation analyses showed an accumulation of Ca(2+) and Zn(2+) in the mycorrhizae of spruce exposed to ozone.  相似文献   
27.
CO(2) enrichment is expected to alter leaf demand for nitrogen and phosphorus in plant species with C(3) carbon dioxide fixation pathway, thus possibly causing nutrient imbalances in the tissues and disturbance of distribution and redistribution patterns within the plants. To test the influence of CO(2) enrichment and elevated tropospheric ozone in combination with different nitrogen supply, spring wheat (Tritium aestivum L. cv. Minaret) was exposed to three levels of CO(2) (361, 523, and 639 microl litre(-1), 24 h mean from sowing to final harvest), two levels of ozone (28.4 and 51.3 nl litre(-1)) and two levels of nitrogen supply (150 and 270 kg ha(-1)) in a full-factorial design in open-top field chambers. Additional fertilization experiments (120, 210, and 330 kg N ha(-1)) were carried out at low and high CO(2) levels. Macronutrients (N, P, K, S, Ca, Mg) and three micronutrients (Mn, Fe, Zn) were analysed in samples obtained at three different developmental stages: beginning of shoot elongation, anthesis, and ripening. At each harvest, plant samples were separated into different organs (green and senescent leaves, stem sections, ears, grains). According to analyses of tissue concentrations at the beginning of shoot elongation, the plants were sufficiently equipped with nutrients. Elevated ozone levels neither affected tissue concentrations nor shoot uptake of the nutrients. CO(2) and nitrogen treatments affected nutrient uptake, distribution and redistribution in a complex manner. CO(2) enrichment increased nitrogen-use efficiency and caused a lower demand for nitrogen in green tissues which was reflected in a decrease of critical nitrogen concentrations, lower leaf nitrogen concentrations and lower nitrogen pools in the leaves. Since grain nitrogen uptake during grain filling depended completely on redistribution from vegetative pools in green tissues, grain nitrogen concentrations fell considerably with severe implications for grain quality. Ca, S, Mg and Zn in green tissues were influenced by CO(2) enrichment in a similar manner to nitrogen. Phosphorus concentrations in green tissues, on the other hand, were not, or only slightly, affected by elevated CO(2). In stems, 'dilution' of all nutrients except manganese was observed, caused by the huge accumulation of water soluble carbohydrates, mainly fructans, in these tissues under CO(2) enrichment. Whole shoot uptake was either remarkably increased (K, Mn, P, Mg), nearly unaffected (N, S, Fe, Zn) or decreased (Ca) under CO(2) enrichment. Thus, nutrient cycling in plant-soil systems is expected to be altered under CO(2) enrichment.  相似文献   
28.
Short exposure to ozone depressed photosynthesis in both oat and duckweed at concentrations above 140 microg m(-3) and 300 microg m(-3), respectively. The effect on exposed oat flag leaves was age-dependent, with maximum susceptibility to ozone 10-20 days after emergence of the panicle. In duckweed, photosynthesis was more sensitive to differences in ozone concentration than to differences in duration of exposure.  相似文献   
29.
Reduction in the surface tension of groundwater, prior to air sparging for removal of volatile organic contaminant from aquifer, can greatly enhance the air content and the extent of influence when air sparging is implemented. However, detailed information on the functional relationship between water saturation, air-water contact area induced by air sparging and the surface tension of water has not been available. In this study, the influence of adding water-soluble anionic surfactant (sodium dodecyl benzene sulfonate) into groundwater before air sparging on the air-water interfacial area and water saturation was investigated using a laboratory-scale sand packed column. It was found that water saturation decreases with decreasing surface tension of water until it reaches a point where this trend is reversed so that water saturation increases with further decrease in the surface tension. The lowest water saturation of 0.58 was achieved at a surface tension of 45.4 dyn/cm, which is considered as the optimum surface tension for maximum de-saturation for the initially water-saturated sand used in this study. The air-water contact area generated in the sand column due to air sparging was measured using a gaseous interfacial tracer, n-decane, and was found to monotonically increase with decreasing water saturation. The results of this study provide useful design information for surfactant-enhanced air sparging removal of volatile contaminants from aquifers.  相似文献   
30.
The denaturing gradient gel electrophoresis (DGGE) method was applied to determine the relative genetic complexity of microbial communities in flooded paddy soil treated with herbicide quinclorac (3,7-dichloro-8-quinoline-carboylic acid). The results obtained showed a significant effect of quinclorac on the development of bacterial populations in soils contaminated with different concentrations of the herbicide at the early time after application. In general, however, the number of populations of the same soil sample treated with the same concentration of the quinclorac differed obviously with increasing incubation time within the early 8 weeks. The scale of differences in banding patterns-showed that the microbial community structures of the quinclorac-treated and non-quinclorac-treated soils were not significantly different after 21 weeks of incubation. Quantification, as demonstrated in this paper, was studied by establishing dose-response relationships. Significant pattern variations were quantified. Prominent DGGE bands were excised, cloned and sequenced to gain insight into the identities of predominant bacterial populations. The majority of DGGE band sequences were related to bacterial genera Clostridium, Sphingobacterium, Xanthomonas and Rhodococcus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号