首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45615篇
  免费   460篇
  国内免费   552篇
安全科学   1309篇
废物处理   1968篇
环保管理   5276篇
综合类   10142篇
基础理论   11085篇
环境理论   27篇
污染及防治   11513篇
评价与监测   2804篇
社会与环境   2264篇
灾害及防治   239篇
  2022年   420篇
  2021年   381篇
  2020年   301篇
  2019年   379篇
  2018年   681篇
  2017年   667篇
  2016年   1009篇
  2015年   778篇
  2014年   1165篇
  2013年   3394篇
  2012年   1387篇
  2011年   1922篇
  2010年   1581篇
  2009年   1656篇
  2008年   1967篇
  2007年   1975篇
  2006年   1708篇
  2005年   1484篇
  2004年   1409篇
  2003年   1426篇
  2002年   1353篇
  2001年   1676篇
  2000年   1172篇
  1999年   736篇
  1998年   520篇
  1997年   528篇
  1996年   522篇
  1995年   617篇
  1994年   633篇
  1993年   517篇
  1992年   551篇
  1991年   537篇
  1990年   582篇
  1989年   525篇
  1988年   434篇
  1987年   410篇
  1986年   378篇
  1985年   401篇
  1984年   429篇
  1983年   420篇
  1982年   406篇
  1981年   400篇
  1980年   318篇
  1979年   345篇
  1978年   302篇
  1974年   251篇
  1972年   256篇
  1971年   250篇
  1967年   274篇
  1965年   253篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
701.
Vehicle-specific power (VSP) is useful for explaining a substantial portion of variability in real-world vehicle emissions, such as those measured with portable emissions monitoring systems (PEMS). VSP is a function of vehicle speed, acceleration, and road grade. Road grade is shown to significantly affect estimates of both VSP and of real-world emissions via sensitivity analysis and analysis of empirical data. However, road grade is difficult to measure reliably using PEMS. Therefore, alternative methods for estimating road grade were identified and compared. A preferred method for estimating road grade was explored in more detail based on light detection and ranging (LIDAR) data. The method includes buffering LIDAR data onto roadway maps using a geographic information system tool, defining segments of roadway based on criteria pertaining to vertical curvature, quantification of roadway elevations within the buffered segments, and estimation of road grade and banking by fitting a plane to each segment. Factors influencing errors in road grade estimates are discussed. The method was evaluated by application to selected interstate highways and comparison to design drawing data. The development and application of LIDAR-based road grade data are demonstrated via a case study using PEMS data collected in the Research Triangle Park, NC, area. LIDAR data are shown to be reliable and accurate for road grade estimation for vehicle emissions modeling.  相似文献   
702.
In a warming climate, permafrost is likely to be significantly reduced and eventually disappear from the sub-Arctic region. This will affect people at a range of scales, from locally by slumping of buildings and roads, to globally as melting of permafrost will most likely increase the emissions of the powerful greenhouse gas methane, which will further enhance global warming. In order to predict future changes in permafrost, it is crucial to understand what determines the presence or absence of permafrost under current climate conditions, to assess where permafrost is particularly vulnerable to climate change, and to identify where changes are already occurring. The Tornetr?sk region of northern sub-Arctic Sweden is one area where changes in permafrost have been recorded and where permafrost could be particularly vulnerable to any future climate changes. This paper therefore reviews the various physical, biological, and anthropogenic parameters that determine the presence or absence of permafrost in the Tornetr?sk region under current climate conditions, so that we can gain an understanding of its current vulnerability and potential future responses to climate change. A patchy permafrost distribution as found in the Tornetr?sk region is not random, but a consequence of site-specific factors that control the microclimate and hence the surface and subsurface temperature. It is also a product of past as well as current processes. In sub-Arctic areas such as northern Sweden, it is mainly the physical parameters, e.g., topography, soil type, and climate (in particular snow depth), that determine permafrost distribution. Even though humans have been present in the study area for centuries, their impacts on permafrost distribution can more or less be neglected at the catchment level. Because ongoing climate warming is projected to continue and lead to an increased snow cover, the permafrost in the region will most likely disappear within decades, at least at lower elevations.  相似文献   
703.
The delineation of well capture zones is of utmost environmental and engineering relevance as pumping wells are commonly used both for drinking water supply needs, where protection zones have to be defined, and for investigation and remediation of contaminated aquifers. We analyze the probabilistic nature of well capture zones within the well field located at the "Lauswiesen" experimental site. The test site is part of an alluvial heterogeneous aquifer located in the Neckar river valley, close to the city of Tübingen in South-West Germany. We explore the effect of different conceptual models of the structure of aquifer heterogeneities on the delineation of three-dimensional probabilistic well catchment and time-related capture zones, in the presence of migration of conservative solutes. The aquifer is modeled as a three-dimensional, doubly stochastic composite medium, where distributions of geo-materials and hydraulic properties are uncertain. We study the relative importance of uncertain facies geometry and uncertain hydraulic conductivity and porosity on predictions of catchment and solute time of travel to the pumping well by focusing on cases in which (1) the facies distribution is random, but the hydraulic properties of each material are fixed, and (2) both facies geometry and material properties vary stochastically. The problem is tackled within a conditional numerical Monte Carlo framework. Results are provided in terms of probabilistic demarcations of the three-dimensional well catchment and time-related capture zones. Our findings suggest that the uncertainty associated with the prediction of the location of the outer boundary of well catchment at the "Lauswiesen" site is significantly affected by the conceptual model adopted to incorporate the heterogeneous nature of the aquifer domain in a predictive framework. Taking into account randomness of both lithofacies distribution and materials hydraulic conductivity allows recognizing the existence of preferential flow paths that influence the extent of the well catchment and the solute travel time distribution at the site.  相似文献   
704.
Development of new economically feasible ecofriendly products from agricultural wastes or byproducts for shrimp farm wastewater treatment is the objective of our continued research. Ammonia is a nitrogenous toxicant, which is commonly found in wastewater from shrimp farms. In the present study, we explored the possibility of the use of simply and inexpensively prepared bagasse products so that this abundant crop byproduct could be used to remove ammonia from shrimp farm wastewater. Bagasse, a natural highly fibrous lignocellulosic byproduct of sugarcane, was converted into five different products. Experimental results have shown that ammonia is efficiently removed from wastewater by four bagasse products with a dose of 1 to 6 g/L within 24 hours. The effect of bagasse products on other water quality parameters and growth kinetics of biofilm bacteria onto bagasse fiber have also been studied. Efficacies of products were compared by using statistical analysis. Products developed from bagasse are useful and economical.  相似文献   
705.
Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 microm in diameter, and total suspended particulate from swine and poultry production buildings in the United States. This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with > or =10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.  相似文献   
706.
Lakes play an important role in the cycling of organic matter in the boreal landscape, due to the frequently high extent of bacterial respiration and the efficient burial of organic carbon in sediments. Based on a mass balance approach, we calculated a carbon budget for a small humic Swedish lake in the vicinity of a potential final repository for radioactive waste in Sweden, in order to assess its potential impact on the environmental fate of radionuclides associated with organic matter. We found that the lake is a net heterotrophic ecosystem, subsidized by organic carbon inputs from the catchment and from emergent macrophyte production. The largest sink of organic carbon is respiration by aquatic bacteria and subsequent emission of carbon.dioxide to the atmosphere. Although the annual burial of organic carbon in the sediment is a comparatively small sink, it results in the build-up of the largest carbon pool in the lake. Hence, lakes may simultaneously disperse and accumulate organic-associated radionuclides leaking from a final repository.  相似文献   
707.
The perchlorate anion has been detected in the drinking water of millions of people living in the United States. At perchlorate levels equal to or greater than 1 mg/L and where the water is not immediately used for household purposes, ex-situ biotreatment has been widely applied. The principal objective of this paper was to compare the technical and economic advantages and disadvantages of various bioreactor configurations in the treatment of low- and medium-strength perchlorate-contaminated aqueous streams. The ideal bioreactor configuration for this application should be able to operate efficiently while achieving a long solids retention time, be designed to promote physical-chemical adsorption in addition to biodegradation, and operate under plug-flow hydraulic conditions. To date, the granular activated carbon (GAC) or sand-media-based fluidized bed reactors (FBRs) and GAC, sand-, or plastic-media-based packed bed reactors (PBRs) have been the reactor configurations most widely applied for perchlorate treatment. Only the FBR configuration has been applied commercially. Commercial-scale cost information presented implies no economic advantage for the PBR relative to the FBR configuration. Full-scale application information provides evidence that the FBR is a good choice for treating perchlorate-contaminated aqueous streams.  相似文献   
708.
Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.  相似文献   
709.
The removal of trace organic compounds through membrane bioreactors (MBR) compared with a conventional wastewater treatment plant (WWTP) in a long-term study was investigated. Two MBR pilot plants were operated in parallel to a full-scale WWTP fed with the same municipal raw wastewater. Polar compounds (phenazone-type pharmaceuticals, their metabolites, and carbamazepine) and less polar estrogenic steroids (estradiol, estrone, and ethinylestradiol) were quantified. The removal rate of phenazone, propyphenazone, and formylaminoantipyrine by the conventional WWTP was less than 15%. Significantly higher removal rates (60 to 70%) started to be clearly monitored in the pilot plants after approximately 5 months. Higher removal rates coincided with higher temperatures in the summer. The conventional WWTP removed, on average, more than 90% of the natural steroids estrone and estradiol and approximately 80% of the synthetic ethinylestradiol. Approximately 99% of estradiol and estrone and approximately 95% of ethinylestradiol was eliminated by the MBR processes.  相似文献   
710.
In this study, the culturability of indoor and outdoor airborne fungi was determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected during three seasons in six Cincinnati area homes that were free from moisture damage or visible mold. Cultivation and total microscopic enumeration methods were employed for the sample analysis. The geometric means of indoor and outdoor culturable fungal concentrations were 88 and 102 colony-forming units (CFU) m(-3), respectively, with a geometric mean of the I/O ratio equal to 0.66. Overall, 26 genera of culturable fungi were recovered from the indoor and outdoor samples. For total fungal spores, the indoor and outdoor geometric means were 211 and 605 spores m(-3), respectively, with a geometric mean of I/O ratio equal to 0.32. The identification revealed 37 fungal genera from indoor and outdoor samples based on the total spore analysis. Indoor and outdoor concentrations of culturable and total fungal spores showed significant correlations (r = 0.655, p<0.0001 and r = 0.633, p<0.0001, respectively). The indoor and outdoor median viabilities of fungi were 55% and 25%, respectively, which indicates that indoor environment provides more favorable survival conditions for the aerosolized fungi. Among the seasons, the highest indoor and outdoor culturability of fungi was observed in the fall. Cladosporium had a highest median value of culturability (38% and 33% for indoor and outdoor, respectively) followed by Aspergillus/Penicillium (9% and 2%) among predominant genera of fungi. Increased culturability of fungi inside the homes may have important implications because of the potential increase in the release of allergens from viable spores and pathogenicity of viable fungi on immunocompromised individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号