首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10273篇
  免费   1222篇
  国内免费   3429篇
安全科学   1253篇
废物处理   346篇
环保管理   791篇
综合类   7347篇
基础理论   1655篇
环境理论   1篇
污染及防治   1603篇
评价与监测   682篇
社会与环境   886篇
灾害及防治   360篇
  2024年   77篇
  2023年   242篇
  2022年   694篇
  2021年   688篇
  2020年   708篇
  2019年   551篇
  2018年   512篇
  2017年   596篇
  2016年   554篇
  2015年   635篇
  2014年   720篇
  2013年   872篇
  2012年   852篇
  2011年   926篇
  2010年   798篇
  2009年   718篇
  2008年   814篇
  2007年   667篇
  2006年   631篇
  2005年   487篇
  2004年   369篇
  2003年   317篇
  2002年   282篇
  2001年   258篇
  2000年   226篇
  1999年   146篇
  1998年   122篇
  1997年   85篇
  1996年   75篇
  1995年   51篇
  1994年   55篇
  1993年   45篇
  1992年   45篇
  1991年   20篇
  1990年   18篇
  1989年   12篇
  1988年   13篇
  1986年   8篇
  1984年   5篇
  1983年   2篇
  1982年   8篇
  1981年   2篇
  1978年   6篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
771.
In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for α-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p′-DDE + p,p′-DDD)/p,p′-DDT is not a reliable criterion for the identification of new DDT sources.  相似文献   
772.
The distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals (EDCs) were studied in various tissues of wild fish species from Dianchi Lake, China. In muscle tissue, 4-tert-octylphenol, 4-cumylphenol, 4-nonlyphenol and bisphenol A were detected in fish from each sampling site, with maximal concentrations of 4.6, 4.4, 18.9 and 83.5 ng/g dry weight (dw), respectively. Steroids (estrone, 17β-estradiol 17α-ethynylestradiol and estriol) were found at lower levels (<11.3 ng/g dw) and less frequently in muscle samples. The highest concentrations of steroids and phenols were found in liver, followed by those in gill and the lowest concentration was found in muscle. The field bioconcentration factors (BCFs) of phenols were calculated in fish species ranged from 18 to 97. Moreover, the measured tissue concentrations were utilized in order to estimate water concentration of steroids (4.4-18.0 ng/L). These results showed that steroidal and phenolic EDCs were likely ubiquitous contaminants in wild fish.  相似文献   
773.
Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint.  相似文献   
774.
Removal of 2-chlorophenol from water using rice-straw derived ash (RSDA) was evaluated in this study to compare with commercial activated carbon. RSDA was obtained by burning rice-straw at 400 °C and 700 °C for 1 h. This ash can provide a better adsorbent for 2-chlorophenol. The adsorption capacities of RSDA at 400 °C and 700 °C are 37 and 52 mg g?1 at pH 4, respectively, and decrease to 9.0 and 40 mg g?1 at pH 10. Adsorption of either neutral or anionic 2-cholorphenol by the RSDA are shown as L-shaped nonlinear isotherms, suggesting surface adsorption rather than partitioning is occurring. At higher-burning temperatures, the surface area, porosity, point of zero charge and aromaticity of the resultant RSDA increase, but the oxygen content and surface acidity decrease. The combined effects result in a higher 2-chlorophenol adsorption of RSDA at 700 °C, which shows a slight pH effect on the adsorption of 2-chlorophenol, due to the lower content of oxygen-containing functional groups. Oxygen-containing functional groups contribute to surface acidity and H-bonding sites for adsorbed water, which compromises the interaction between 2-chlorophenol and the adsorbents. Thus, it suggests that rice-straw derived carbon (RSDC) can be used as an effective low-cost substitute material for activated carbon for removal of chlorophenols from wastewater.  相似文献   
775.
Perfluorinated compounds (PFCs) have been widely used in industrial and consumer products and frequently detected in many environmental media. Potential reproductive effects of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) have been reported in mice, rats and water birds. PFOS and PFOA were also confirmed developing toxicants towards zebrafish embryos; however, the reported effect concentrations were contradictory. Polyfluorinated alkylated phosphate ester surfactants (including FC807) are precursor of PFOS and PFOA; however, there is no published information about the effects of FC807 and PFNA on zebrafish embryos. Therefore, this study was conducted to determine the effects of these four PFCs on zebrafish embryos. Normal fertilized zebrafish embryos were selected to be exposed to several concentrations of PFOA, PFNA, PFOS or FC807 in 24-well cell culture plates. A digital camera was used to image morphological anomalies of embryos with a stereomicroscope. Embryos were observed through matching up to 96-h post-fertilization (hpf) and rates of survival and abnormalities recorded. PFCs caused lethality in a concentration-dependent manner with potential toxicity in the order of PFOS > FC807 > PFNA > PFOA based on 72-h LC(50). Forty-eight-hour post-fertilization pericardial edema and 72- or 96-hpf spine crooked malformation were all observed. PFOA, PFNA, PFOS and FC807 all caused structural abnormalities using early stages of development of zebrafish. The PFCs all retarded the development of zebrafish embryos. The toxicity of the PFCs was related to the length of the PFC chain and functional groups.  相似文献   
776.
通过比较连续浸出、碳酸化保存间歇浸出和密封保存间歇浸出3种浸出条件下,废物水泥窑共处置产品--混凝土中Cr、Ni、As、Cd和Pb的浸出量,研究了干湿交替的环境中碳酸化对混凝土中重金属浸出的影响.结果表明,不同的漫出条件对混凝土中重金属的浸出产生了一定的影响.间歇浸出过程降低了重金属在混凝土固相与孔隙水(液相)中的浓度...  相似文献   
777.
Yan H  Wang D  Dong B  Tang F  Wang B  Fang H  Yu Y 《Chemosphere》2011,84(5):634-641
The dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal:bacterial ratios and soil enzyme activities were investigated. The results revealed that carbendazim dissipation was little affected by chloramphenicol, whereas chloramphenicol dissipation was found to be retarded significantly by the presence of carbendazim. The inhibitory effect of carbendazim on the fungal:bacterial ratios was increased by the presence of chloramphenicol, and the inhibitory effect of chloramphenicol on neutral phosphatase was increased by the presence of carbendazim. Carbendazim increased soil catalase and urease activities, but this increase was partially diminished by the presence of chloramphenicol. Little interaction was observed between carbendazim and chloramphenicol with regard to their influence on soil invertase. The results obtained in this study suggest that combinations of fungicides and antibiotics may alter the compounds’ individual behaviors in soil and their effects on soil enzymes.  相似文献   
778.
Yu TH  Lin AY  Panchangam SC  Hong PK  Yang PY  Lin CF 《Chemosphere》2011,84(9):1216-1222
In the present study, the removal mechanisms of four antibiotics (sulfamethoxazole, sulfadimethoxine, sulfamethazine, and trimethoprim) and four non-steroidal anti-inflammatory drugs (acetaminophen, ibuprofen, ketoprofen, and naproxen) in immobilized cell process were investigated using batch reactors. This work principally explores the individual or collective roles of biodegradation and bio-sorption as removal routes of the target pharmaceuticals and the results were validated by various experimental and analytical tools. Biodegradation and bio-sorption were found as dominant mechanisms for the drug removal, while volatilization and hydrolysis were negligible for all target pharmaceuticals. The target pharmaceuticals responded to the two observed removal mechanisms in different ways, typically: (1) strong biodegradability and bio-sorption by acetaminophen, (2) strong biodegradability and weak bio-sorption by sulfamethoxazole, sulfadimethoxine, ibuprofen and naproxen, (3) low biodegradability and weak bio-sorption by sulfamethazine and ketoprofen, and (4) low biodegradability and medium bio-sorption by trimethoprim. In the sorption/desorption experiment, acetaminophen, sulfamethoxazole and sulfadimethoxine were characterized by strong sorption and weak desorption. A phenomenon of moderate sorption and well desorption was observed for sulfamethazine, trimethoprim and naproxen. Both ibuprofen and ketoprofen were weakly sorbed and strongly desorbed.  相似文献   
779.
Agarwal A  Ng WJ  Liu Y 《Chemosphere》2011,84(9):1175-1180
In recent years, microbubble and nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology, such as water treatment, biomedical engineering, and nanomaterials. In this paper, we discuss the physics, methods of generation of microbubbles (MBs) and nanobubbles (NBs), while production of free radicals from MBs and NBs are reviewed with the focuses on degradation of toxic compounds, water disinfection, and cleaning/defouling of solid surfaces including membrane. Due to their ability to produce free radicals, it can be expected that the future prospects of MBs and NBs will be immense and yet more to be explored.  相似文献   
780.
Choi M  Furlong ET  Moon HB  Yu J  Choi HG 《Chemosphere》2011,85(8):1406-1413
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32-875 μg L−1 in creeks, 0.61-87.0 μg L−1 in WWTP effluents, and 29.3-230 μg g−1 TOC in sediments. Concentrations of COP were 0.09-19.0 μg L−1 in creeks, 0.11-44.0 μg L−1 in WWTP effluents, and 2.51-438 μg g−1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d−1 for NPs and 1.00 kg d−1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号