首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   1篇
  国内免费   5篇
安全科学   6篇
废物处理   9篇
环保管理   5篇
综合类   9篇
基础理论   21篇
污染及防治   107篇
评价与监测   31篇
社会与环境   5篇
  2023年   3篇
  2022年   27篇
  2021年   30篇
  2020年   9篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   20篇
  2012年   10篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   11篇
  2007年   9篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
21.
Efficient and sustainable management of rapidly mounting environmental issues has been the focus of current intensive research. The present study aimed to investigate the impact of plant phenological development stage variation on mercury (Hg) tolerance, accumulation, and allocation in two salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in historically Hg-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stands of T. maritima and S. maritimus were collected from reference (R) and sites with moderate (M) and high (H) Hg contamination in Laranjo bay within Ria de Aveiro lagoon. Hg tolerance, uptake, and allocation in T. maritima and S. maritimus, physico-chemical traits (pH, redox potential, and organic matter content) and Hg concentrations in sediments vegetated by these species were impacted differentially by phenological development stages variation irrespective of the Hg contamination level. In T. maritima, Hg concentration increased with increase in Hg contamination gradient where root displayed significantly higher Hg followed by rhizome and leaf maximally at H. However, in S. maritimus, the highest Hg concentration was perceptible in rhizome followed by root maximally at M. Between the two studied plant species, S. maritimus displayed higher Hg tolerance index (depicted by higher plant dry mass allocated to reproductive stage) and higher available Hg at M (during all growth stages) and H (during senescent stage) when compared to T. maritimus. Both plant species proved to be Hg excluder (low root/rhizome–leaf Hg translocation). Additionally, T. maritima also acted as Hg stabilizer while, S. maritimus as Hg accumulator. It can be inferred from the study that (a) the plant phenological development stage variations significantly influenced plant Hg sensitivity by impacting sediment chemistry, plant growth (in terms of plant dry mass), Hg accumulation, and its subsequent allocation capacity, contingent to Hg contamination gradient; (b) S. maritimus accumulated higher Hg but restricted its translocation to above-ground part using exclusion process at both M and H due to its accelerated growth during Hg-tolerant reproductive/metabolically active phenological development stage greater than its counterpart T. maritima; and (c) the studied salt marsh plants although hailed from the same C3 and monocot group did not necessarily display similar phenotypic plasticity and behavior towards Hg-contaminated scenario during their life cycle.  相似文献   
22.
The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).  相似文献   
23.
The present study was carried out in order to evaluate the statistical apportionment and risk assessment of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshly deposited sediments in Rawal Lake, Pakistan. Composite sediment samples were collected, oven-dried, grounded, homogenized, and processed to assess the water-soluble and acid extractable concentrations of the metals in the water extract and acid extract of the sediments using flame atomic absorption spectrophotometer. Statistical methods were used to identify the possible sources of the metals. Sediment quality guidelines and potential acute toxicity were used to evaluate the ecotoxicological sense of selected metals. Non-carcinogenic health risk assessment was also carried out to determine the potential adverse health risks to the inhabitants. Relatively higher concentration was noted for Ca, Fe, Mg, Na, K, Mn, and Sr in the sediment samples. Principal component analysis and cluster analysis revealed anthropogenic contributions of Cd, Pb, Cr, Mn, Fe, and Li in the sediments. Enrichment factors of the metals in sediments showed severe to moderate enrichment of Cd, Pb, Ca, Fe, Li, Mn, and Sr. Geoaccumulation indices and contamination factors evidenced significant contamination by Cd and Pb, although, on the whole, low degree of contamination was noted. The levels of some metals exceeded the sediment quality guidelines, which revealed frequently adverse biological effects to the dwelling biota in the aquatic ecosystem. The sediments were found to be significantly contaminated by Cd, Pb, Cr, Mn, Fe, and Li.  相似文献   
24.
Majority of the people of Pakistan get drinking water from groundwater source. Nearly 40 % of the total ailments reported in Pakistan are the result of dirty drinking water. Every summer, thousands of patients suffer from acute gastroenteritis in the Rawal Town. Therefore, a study was designed to generate a water quality index map of the Rawal Town and identify the relationship between bacteriological water quality and socio-economic indicators with gastroenteritis in the study area. Water quality and gastroenteritis patient data were collected by surveying the 262 tubewells and the major hospitals in the Rawal Town. The collected spatial data was analyzed by using ArcGIS spatial analyst (Moran’s I spatial autocorrelation) and geostatistical analysis tools (inverse distance weighted, radial basis function, kriging, and cokriging). The water quality index (WQI) for the study area was computed using pH, turbidity, total dissolved solids, calcium, hardness, alkalinity, and chloride values of the 262 tubewells. The results of Moran’s I spatial autocorrelation showed that the groundwater physicochemical parameters were clustered. Among IDW, radial basis function, and kriging and cokriging interpolation techniques, cokriging showed the lowest root mean square error. Cokriging was used to make the spatial distribution maps of water quality parameters. The WQI results showed that more than half of the tubewells in the Rawal Town were providing “poor” to “unfit” drinking water. The Pearson’s coefficient of correlation for gastroenteritis with fecal coliform was found significant (P?P?P?相似文献   
25.
The composting process of different organic wastes both in laboratory and on a large-scale was characterized using CIELAB color variables to evaluate compost stability for the better application in agriculture. The time courses of the CIELAB variables of composting materials were determined directly from the bottom of a glass petri dish filled with dried and ground samples using a Minolta Color Reader (CR-13) calibrated with clean empty petri dishes placed on a white tile. To compare the proposed method with conventional methods, the same materials were also evaluated using commonly used compost stability evaluation indices. Most of the CIELAB variables of a compost made from a mixture of green tea waste and rice bran reached a plateau after 84 days of composting and showed strong relationships with the commonly used compost stability evaluation indices. The time needed for CIELAB variables, especially the L*and b* values, to stabilize at large-scale composting plants of cattle litter, farmyard manure, kitchen garbage and bark compost, were more or less similar to the times of maturation evaluated by the respective compost producers. The CIELAB color variable offers a new, simple, rapid and inexpensive means of evaluating compost stability and its quality prior to agricultural use.  相似文献   
26.
Environmental Science and Pollution Research - Urban-dwelling birds can be useful biomonitors to assess the impact of the urbanisation on both public and wildlife health. Widely distributed urban...  相似文献   
27.
Red soil may play an important role in nitrous oxide (N2O) emissions due to its recent land use change pattern. To predict the land use change effect on N2O emissions, we examined the relationship between soil N2O flux and environmental determinants in four different types of land uses in subtropical red soil. During two years of study (January 2005-January 2007), biweekly N2O fluxes were measured from 09:00 to 11:00 a.m. using static closed chamber method. Objectives were to estimate the seasonal and annual N2O flux differences from land use change and, reveal the controlling factors of soil N2O emission by studying the relationship of dissolved organic carbon (DOC), microbial biomass carbon (MBC), water filled pore space (WFPS) and soil temperature with soil N2O flux. Nitrous oxide fluxes were significantly higher in hot-humid season than in the cool-dry season. Significant differences in soil N2O fluxes were observed among four land uses; 2.9, 1.9 and 1.7 times increased N2O emissions were observed after conventional land use conversion from woodland to paddy, orchard and upland, respectively. The mean annual budgets of N2O emission were 0.71-2.21 kg N2O-N ha−1 year−1 from four land use types. The differences were partly attributed to increased fertilizer use in agriculture land uses. In all land uses, N2O fluxes were positively related to soil temperature and DOC accounting for 22-48% and 30-46% of the seasonal N2O flux variability, respectively. Nitrous oxide fluxes did significantly correlate with WFPS in orchard and upland only. Nitrous oxide fluxes responded positively to MBC in all land use types except orchard which had the lowest WFPS. We conclude that (1) land use conversion from woodland to agriculture land uses leads to increased soil N2O fluxes, partly due increased fertilizer use, and (2) irrespective of land use, soil N2O fluxes are under environmental controls, the main variables being soil temperature and DOC, both of which control the supply of nitrification and denitrification substrates.  相似文献   
28.
Environmental Science and Pollution Research - The utilization of economic capabilities to raise production in the economy enhances the industrial activities and use of transportation. These...  相似文献   
29.
Environmental Science and Pollution Research - As a major source of pollution and the cause of climate change, greenhouse gas emissions are attracting the attention of scholars, policymakers, and...  相似文献   
30.
Environmental Science and Pollution Research - This study examines China’s budgetary policy during the COVID-19 pandemic as a result of China’s insufficient ability to deal with a new...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号