首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   0篇
  国内免费   3篇
安全科学   2篇
废物处理   13篇
环保管理   21篇
综合类   28篇
基础理论   35篇
污染及防治   75篇
评价与监测   23篇
社会与环境   6篇
灾害及防治   4篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   8篇
  2016年   9篇
  2015年   4篇
  2014年   11篇
  2013年   24篇
  2012年   10篇
  2011年   13篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
  1959年   1篇
  1954年   1篇
  1953年   1篇
  1923年   1篇
排序方式: 共有207条查询结果,搜索用时 31 毫秒
61.
Simple and effective extraction methods based on matrix solid-phase dispersion (MSPD), dispersive liquid–liquid microextraction (DLLME), and solid-phase extraction (SPE) coupled with high-performance liquid chromatography with diode array detector (HPLC-DAD) were developed to determine triketone herbicides—sulcotrione (SUL), mesotrione (MES), tembotrione (TEMB), and their degradation products—in plant tissues and water samples. The extraction procedures were employed to enable quantification of the accumulation of selected triketone herbicides and their degradation products in a model aquatic plant, Egeria densa. To obtain comprehensive information about the triketones' influence on an aquatic plant, changes in chlorophyll concentration in plants exposed to these triketones were monitored. The average recovery ranged from 58 to 115 % (coefficients of variation 7–12 %) for plant tissues and from 52 to 96 % (coefficients of variation 8–20 %) for water samples. The limit of detection (LOD) for the MSPD–HPLC-DAD procedure was in the range of 0.06–0.23 μg/g, whereas for DLLME–HPLC-DAD and SPE–HPLC-DAD, LOD was in the range of 0.06–0.26 μg/mL. Symptoms of the phytotoxicity of sulcotrione, mesotrione, tembotrione, and their degradation products (decrease of chlorophyll concentration in plant sprouts) were observed for E. densa cultivated in water with herbicide concentrations of 100 μg/L. Moreover, the tembotrione degradation product exhibited a high level of accumulation and low metabolism in plant tissues in comparison to the other triketones and their degradation products.  相似文献   
62.
Abstract

Members of TRP receptor family are involved in response to acidification. Here, we determined the effect of capsaicin, one of the TRP receptor activators, on hemolymph acid-base status in the American cockroach. Periplaneta americana adult individuals were injected with lactic acid (5% or 10%) and exposed to 100?µM capsaicin solution. Hemolymph pH was measured 15?min, 1, 4, 8 and 24?h after lactic acid and capsaicin application with a glass microelectrode. The results demonstrated that cockroaches recover from acidosis within 4?h from acid injection. Capsaicin impaired the buffering capacity of insects’ hemolymph, resulting in significant drop of hemolymph pH observed even 24?h after application. Joint action of capsaicin and acidosis reveals new insight into possible mechanism of capsaicin action on TRP receptors in insects.  相似文献   
63.
Arid and semi-arid shrublands have significant biological and economical values and have been experiencing dramatic changes due to human activities. In California, California sage scrub (CSS) is one of the most endangered plant communities in the US and requires close monitoring in order to conserve this important biological resource. We investigate the utility of remote-sensing approaches—object-based image analysis applied to pansharpened QuickBird imagery (QBPS/OBIA) and multiple endmember spectral mixture analysis (MESMA) applied to SPOT imagery (SPOT/MESMA)—for estimating fractional cover of true shrub, subshrub, herb, and bare ground within CSS communities of southern California. We also explore the effectiveness of life-form cover maps for assessing CSS conditions. Overall and combined shrub cover (i.e., true shrub and subshrub) were estimated more accurately using QBPS/OBIA (mean absolute error or MAE, 8.9 %) than SPOT/MESMA (MAE, 11.4 %). Life-form cover from QBPS/OBIA at a 25?×?25 m grid cell size seems most desirable for assessing CSS because of its higher accuracy and spatial detail in cover estimates and amenability to extracting other vegetation information (e.g., size, shape, and density of shrub patches). Maps derived from SPOT/MESMA at a 50?×?50 m scale are effective for retrospective analysis of life-form cover change because their comparable accuracies to QBPS/OBIA and availability of SPOT archives data dating back to the mid-1980s. The framework in this study can be applied to other physiognomically comparable shrubland communities.  相似文献   
64.
Aerosol size distributions were measured in the air exhausted from a horizontal spike Soderberg aluminum reduction cell at the Kaiser Aluminum and Chemical Corporation plant in Tacoma, Wash. The particle size distributions were measured with the University of Washington cascade impactor, developed specifically for source testing. The particle mass concentrations and size distributions were found to vary significantly with changes in the cell process operations. For a typical aerosol size distribution at the exit of the cell hood the mass mean particle diameter was 5.5 microns and the particle size standard geometric deviation was 25.  相似文献   
65.
Analysis of the physiological status of subsurface microbial communities generally relies on the study of unattached microorganisms in the groundwater. These approaches have been employed in studies on bioremediation of uranium‐contaminated groundwater at a study site in Rifle, Colorado, in which Geobacter species typically account for over 90 percent of the microbial community in the groundwater during active uranium reduction. However, to develop efficient in situ bioremediation strategies it is necessary to know the status of sediment‐associated microorganisms as well. In order to evaluate the distribution of the natural community of Geobacter during bioremediation of uranium, subsurface sediments were packed into either passive flux meters (PFMs) or sediment columns deployed in groundwater monitoring wells prior to acetate injection during in situ biostimulation field trials. The trials were performed at the Department of Energy's (DOE's) Rifle Integrated Field Research Challenge site. Sediment samples were removed either during the peak of Fe(III) reduction or the peak of sulfate reduction over the course of two separate field experiments and preserved for microscopy. Direct cell counts using fluorescence in situ hybridization (FISH) probes targeting Geobacter species indicated that the majority of Geobacter cells were unattached during Fe(III) reduction, which typically tracks with elevated rates of uranium reduction. Similar measurements conducted during the sulfate‐reducing phase revealed the majority of Geobacter to be attached following exhaustion of more readily bioavailable forms of iron minerals. Laboratory sediment column studies confirmed observations made with sediment samples collected during field trials and indicated that during Fe(III) reduction, Geobacter species are primarily unattached (90 percent), whereas the majority of sulfate‐reducing bacteria and Geobacter species are attached to sediment surfaces when sulfate reduction is the predominant form of metabolism (75 percent and 77 percent, respectively). In addition, artificial sediment experiments showed that pure cultures of Geobacter uraniireducens, isolated from the Rifle site, were primarily unattached once Fe(III) became scarce. These results demonstrate that, although Geobacter species must directly contact Fe(III) oxides in order to reduce them, cells do not firmly attach to the sediments, which is likely an adaptive response to sparsely and heterogeneously dispersed Fe(III) minerals in the subsurface. © 2013 Wiley Periodicals, Inc.  相似文献   
66.
Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.  相似文献   
67.
Zibret G 《Ambio》2012,41(3):292-301
This article presents the impact of the ecological investment in ironworks (dust filter installation) and construction works at a highly contaminated brownfield site on the chemical composition of household dust (HD) and street sediment (SS) in Celje, Slovenia. The evaluation is based on two sampling campaigns: the first was undertaken 1 month before the ecological investment became operational and the second 3 years later. The results show that dust filter installations reduced the content of Co, Cr, Fe, Mn, Mo, W and Zn on average by 58% in HD and by 51% in SS. No reduction was observed at sampling points in the upwind direction from the ironworks. By contrast, the impact of the construction works on the highly contaminated brownfield site was detected by a significant increase (on average by 37%) of elements connected to the brownfield contamination in SS. Such increase was not detected in HD.  相似文献   
68.
Usman M  Faure P  Ruby C  Hanna K 《Chemosphere》2012,87(3):234-240
In this study, feasibility of magnetite-activated persulfate oxidation (AP) was evaluated for the degradation of polycyclic aromatic hydrocarbons (PAHs) in batch slurry system. Persulfate oxidation activated with soluble Fe(II) (FP) or without activation (SP) was also tested. Kinetic oxidation of PAHs was tracked in spiked sand and in aged PAH contaminated soils at circumneutral pH. Quartz sand was spiked with: (i) single model pollutant (fluorenone) and (ii) organic extract isolated from two PAH contaminated soils (H and NM sampled from ancient coking plants) and was subjected to oxidation. Oxidation was also performed on real H and NM soils with and without an extraction pretreatment. Results indicate that oxidation of fluorenone resulted in its complete degradation by AP while abatement was very low (<20%) by SP or FP. In soil extracts spiked on sand, significant degradation of 16 PAHs was observed by AP (70-80%) in 1 week as compared to only 15% by SP or FP systems. But no PAH abatement was observed in real soils whatever the treatment used (AP, FP or SP). Then soils were subjected to an extraction pretreatment but without isolation of organic extract from soil. Oxidation of this pretreated soil showed significant abatement of PAHs by AP. On the other hand, very low degradation was achieved by FP or SP. Selective degradation of PAHs was observed by AP with lower degradation efficiency towards high molecular weight PAHs. Analyses revealed that no by-products were formed during oxidation. The results of this study demonstrate that magnetite can activate persulfate at circumneutral pH for an effective degradation of PAHs in soils. However, availability of PAHs and soil matrix were found to be the most critical factors for degradation efficiency.  相似文献   
69.
Achá D  Hintelmann H  Yee J 《Chemosphere》2011,82(6):911-916
Sulfate reducing bacteria (SRB) are important mercury methylators in sediments, but information on mercury methylators in other compartments is ambiguous. To investigate SRB involvement in methylation in Amazonian periphyton, the relationship between Hg methylation potential and SRB (Desulfobacteraceae, Desulfobulbaceae and Desulfovibrionaceae) abundance in Eichhornia crassipes and Polygonum densiflorum root associated periphyton was examined. Periphyton subsamples of each macrophyte were amended with electron donors (lactate, acetate and propionate) or inhibitors (molybdate) of sulfate reduction to create differences in SRB subgroup abundance, which was measured by quantitative real-time PCR with primers specific for the 16S rRNA gene. Mercury methylation and demethylation potentials were determined by a stable isotope tracer technique using 200HgCl and CH3202HgCl, respectively. Relative abundance of Desulfobacteraceae (<0.01-12.5%) and Desulfovibrionaceae (0.01-6.8%) were both highly variable among samples and subsamples, but a significant linear relationship (p < 0.05) was found between Desulfobacteraceae abundance and net methylmercury formation among treatments of the same macrophyte periphyton and among all P. densiflorum samples, suggesting that Desulfobacteraceae bacteria are the most important mercury methylators among SRB families. Yet, molybdate only partially inhibited mercury methylation potentials, suggesting the involvement of other microorganisms as well. The response of net methylmercury production to the different electron donors and molybdate was highly variable (3-1104 pg g−1 in 12 h) among samples, as was the net formation in control samples (17-164 pg g−1 in 12 h). This demonstrates the importance of community variability and complexity of microbial interactions for the overall methylmercury production in periphyton and their response to external stimulus.  相似文献   
70.

Background, aim, and scope  

In literature, the environmental applications of green rust (GR) have mainly been pointed out through the reduction of inorganic contaminants and the reductive dechlorination of chlorinated organics. However, reactions involving GR for the oxidation and mineralization of organic pollutants remain very scantly described. In this study, the ability of three synthetic Fe(II)–Fe(III) green rusts, GR(CO32−), GR(SO42−), and GR(Cl), to promote Fenton-like reaction was examined by employing phenol as a model pollutant. Unlike the traditional Fenton’s reagent (dissolved Fe(II) + H2O2), where the pH values have to be lowered to less than 4, the proposed reaction can effectively oxidize the organic molecules at neutral pH and could avoid the initial acidification which may be costly and destructive for the in situ remediation of contaminated groundwater and soils. The green rust reactivity towards the oxidative transformation of phenol was thoroughly evaluated by performing a large kinetic study, chemical analyses, and spectroscopic investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号