首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1148篇
  免费   8篇
  国内免费   5篇
安全科学   18篇
废物处理   45篇
环保管理   70篇
综合类   670篇
基础理论   139篇
污染及防治   167篇
评价与监测   32篇
社会与环境   18篇
灾害及防治   2篇
  2017年   14篇
  2015年   10篇
  2014年   10篇
  2013年   39篇
  2012年   33篇
  2011年   30篇
  2010年   22篇
  2009年   28篇
  2008年   23篇
  2007年   27篇
  2006年   29篇
  2005年   32篇
  2004年   37篇
  2003年   33篇
  2002年   26篇
  2001年   13篇
  2000年   9篇
  1998年   11篇
  1995年   14篇
  1994年   12篇
  1993年   10篇
  1989年   10篇
  1978年   10篇
  1966年   10篇
  1965年   15篇
  1964年   15篇
  1963年   25篇
  1962年   17篇
  1961年   14篇
  1960年   23篇
  1959年   24篇
  1958年   15篇
  1957年   16篇
  1956年   15篇
  1955年   27篇
  1954年   33篇
  1953年   19篇
  1952年   14篇
  1951年   24篇
  1948年   9篇
  1947年   11篇
  1941年   9篇
  1939年   9篇
  1938年   12篇
  1935年   8篇
  1933年   9篇
  1931年   11篇
  1930年   12篇
  1929年   13篇
  1921年   8篇
排序方式: 共有1161条查询结果,搜索用时 93 毫秒
271.
Samples obtained from an industrialized valley in the East Alpine region were collected daily for a half year and analyzed using X-ray fluorescence to examine the elements Si,Al,Fe,Ca,Mg,Na,K,Zn,P,S and Cl.Some factors affecting the changes of these elements were considered,including time,elemental correlations,weekday,weekend and seasonal changes.Diagnostic analysis provided an insight into a decoupling behavior that occursin siliceous and carbonates minerals.A decrease in Si and Al and an increase in carbonates,Na,K,Zn and P were observed during the cold season.However,a consistently high correlation of Si and Al was observed in all seasons.It was established that such high levels originated from street surface abrasion.The increase in variability and absolute levels of carbonates during the cold season was demonstrated by adding carbonates to the street surface as gritting material to increase the grip on snowy surfaces.A marked increase in Na and Cl was observed in winter which may have been caused by thaw salt that is widely used in winter in Austria.This was associated with a significant increase in K,Zn,and P in the cold season that was the result of domestic space heating with wood.PM10 levels in December were 12 μg/m3 and were higher than levels detected in July.It was established that such high levels originated from mineral oxides,wood smoke,and inorganic ionic material(s).  相似文献   
272.
PM10 levels of the mineral components Si, Al, Fe, Ca, Mg and some trace metals were measured at three different sites in the urban area of Vienna (Austria). Observed trace metal concentrations varied between less than 0.1 ng m?3 (Cd) and approximately 200 ng m?3 (Zn), mineral components showed enhanced concentrations ranging from 0.01 μg m?3 (Ca) to 16.3 μg m?3 (Si). The contribution of the respective mineral oxides to PM10 mass concentrations accounted on average for 26.4 ± 16% (n = 1090) of the PM10 mass, with enhanced rates in spring and autumn (monthly averages of up to 40%) and decreased contributions in the cold season (monthly averages below 10%). The atmospheric occurrence of Al, Ti and Sr could be assigned to crustal sources, whereas for the elements Ba, Ca, Fe, Mg, Mn and V an increased contribution of non-crustal origin was observed. PM10 levels of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Sn and Zn were predominantly derived from man-made emissions. Intersite comparison indicated that urban PM10 mass concentrations and PM10 levels of As, Pb and Zn were predominantly influenced from the transport of aerosols from outside into the city, whereas for the elements Ba, Mg, Ca, Cu and Fe a distinctly increased impact of local emissions was observed. The contribution of these urban emissions to total PM10 concentrations was estimated by calculating the so-called “urban impact”, which was found to be 32.7 ± 18% (n = 392) in the case of PM10 mass concentrations. The investigated elements accounted on average for 31.3 ± 19% (n = 392) of the observed PM10 mass increase. The mean values for the “urban impacts” of individual elements varied between 25.5% (As) and 77.0% (Ba).  相似文献   
273.
Phytoremediation of polyaromatic hydrocarbons, anilines and phenols   总被引:12,自引:0,他引:12  
Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the 'bound' residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.  相似文献   
274.

Polymerizations of l-lactide catalyzed either by neat SnCl2 or by SnCl2?+?difunctional cocatalysts were conducted in bulk at 180, 160 and 140 °C with variation of the Lac/Cat ratio and time. With neat SnCl2 poly(L-lactide) having weight average molecular weights (uncorrected Mw’s) up to 190 000 g mol?1 were obtained mainly consisting of linear chains. Addition of salicylic acid or 1,1-bisphenol yielded a higher fraction of cyclic polylactides but lower molecular weights. Furthermore, SnCl2 was compared with Bu2SnCl2 and various other metal chlorides and the best results were obtained with SnCl2. With ethyl L-lactate as initiator SnCl2-catalyzed ROPs were performed at 120 °C and the lac/initiator ratio was varied. All these experiments were conducted under conditions allowing for comparison with ROPs catalyzed with neat Sn(II)-2-ethyhexanoate. Such a comparison was also performed with ε-caprolactone as monomer.

  相似文献   
275.
276.
277.
278.
279.
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号