首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2237篇
  免费   17篇
  国内免费   91篇
安全科学   105篇
废物处理   210篇
环保管理   280篇
综合类   293篇
基础理论   392篇
环境理论   1篇
污染及防治   782篇
评价与监测   193篇
社会与环境   74篇
灾害及防治   15篇
  2023年   11篇
  2022年   32篇
  2021年   36篇
  2020年   12篇
  2019年   41篇
  2018年   70篇
  2017年   58篇
  2016年   78篇
  2015年   54篇
  2014年   67篇
  2013年   178篇
  2012年   123篇
  2011年   143篇
  2010年   96篇
  2009年   129篇
  2008年   134篇
  2007年   144篇
  2006年   128篇
  2005年   114篇
  2004年   105篇
  2003年   97篇
  2002年   88篇
  2001年   62篇
  2000年   35篇
  1999年   24篇
  1998年   20篇
  1997年   23篇
  1996年   16篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   10篇
  1991年   19篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有2345条查询结果,搜索用时 15 毫秒
161.
A novel photonic decontamination method was developed for removal of pollutants from material surfaces. Such a method relies on the ability of a high-energy laser beam to ablate materials from a contaminated surface layer, thus producing airborne particles. In this paper, the authors presented the results obtained using a scanning mobility particle sizer (SMPS) system and an aerosol particle sizer (APS). Particles generated by laser ablation from the surfaces of cement, chromium-embedded cement, and alumina were experimentally investigated. Broad particle distributions from nanometer to micrometer in size were measured. For stainless steel, virtually no particle > 500 nm in aerodynamic size was detected. The generated particle number concentrations of all three of the materials were increased as the 266-nm laser fluence (millijoules per square centimeter) increased. Among the three materials tested, cement was found to be the most favorable for particle removal, alumina next, and stainless steel the least. Chromium (dropped in cement) showed almost no effects on particle production. For all of the materials tested except for stainless steel, bimodal size distributions were observed; a smaller mode peaked at approximately 50-70 nm was detected by SMPS and a larger mode (peaked at approximately 0.70-0.85 microm) by APS. Based on transmission electron microscopy observations, the authors concluded that particles in the range of 50-70 nm were aggregates of primary particles, and those of size larger than a few hundred nanometers were produced by different mechanisms, for example, massive object ejection from the material surfaces.  相似文献   
162.
Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996-1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by -17%, 35% for SO4(2-), and 29% for NH4+, whereas NO3- increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 microg/m(-3), accounting for -26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer. Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3-, SO4(2-), NH4+, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   
163.
The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   
164.
We present a model of overtaking behavior that can be used to simulate unidirectional pedestrian flow in routine. All pedestrians have the ability to determine whether or not to overtake other pedestrians according to their desired velocity and position. Although existing models such as cellular automata models, lattice gas models, social force models, etc., can be used to predict evacuation performance, most of these models are either computationally inefficient or do not account for some crucial elements of human behavior in a moving crowd. Furthermore, these models use either empirical equations developed from experiments or mechanical system analogies to determine movement decisions. The pedestrian flow patterns simulated by these models may deviate significantly from reality. In reality, pedestrians walk at different velocities and pedestrians with a higher walking velocity are accustomed to overtaking other pedestrians with a lower walking velocity and this paper aims to mimic this behavior as the original social force model developed by Helbing et al. does not reflect this pattern of collective pedestrian behavior. In this paper, we propose modifications of the social force model that reflects how overtaking behavior operates in routine. The comparison of the pedestrian flow pattern between the original social force model and the modified social force models with the real data collected by the camcorder is also performed in order to demonstrate our modified social force model can be used to achieve reasonable simulations of overtaking behavior among pedestrians.  相似文献   
165.
Environmental Geochemistry and Health - Carbon dioxide (CO2) capture and storage (CCS) plays a crucial role in reducing carbon emissions to the atmosphere. However, gas leakage from deep storage...  相似文献   
166.
This paper examines long-run and short-run dynamics of renewable energy consumption on carbon dioxide (CO2) emissions and economic growth in the European Union. This study employs cointegration tests, Granger causality tests and vector error correction estimates to examine the direction of Granger causality, the long-run dynamics of economic growth and energy variables on carbon emissions. This study analyses time series data from the World Development Indicators over the period from1961 to 2012. The results of this study support a link between renewable energy consumption, economic growth, industrialization, exports and CO2 emissions in the long-run and short-run. The results support that the sign of the long-run dynamics from the endogenous variables to the CO2 emissions variable is negative and significant, which implies that the energy and environmental policies of the European Union aimed at curbing CO2 emissions must have been effective in the long-term. Furthermore, renewable energy consumption and exports have significant negative impact on CO2 emissions in the short-run. However, industrialization and economic growth have positive impact on CO2 emissions in the short-run. The results suggest that both economic growth and industrialization must have been achieved at the cost of harming the environment. The finding suggests that the increasing consumption of renewable energy tends to play an important role in curbing carbon emissions in the region.  相似文献   
167.
Environmental Geochemistry and Health - The CO2-rich spring water (CSW) occurring naturally in three provinces, Kangwon (KW), Chungbuk (CB), and Gyeongbuk (GB) of South Korea was classified based...  相似文献   
168.
Environmental Geochemistry and Health - Iron oxide and oxy-hydroxide are commonly used for remediation and rehabilitation of arsenic (As)-contaminated soil and water. However, the stability of As...  相似文献   
169.
Environmental Geochemistry and Health - Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the...  相似文献   
170.
As green infrastructure gets its attention in hazard mitigation, it is necessary to improve general understanding on what makes green infrastructure important for hazard and resiliency research. To better understand how green infrastructure fits with more traditional notions of structural and nonstructural mitigation, this study examines the relationship between green infrastructure and ‘structural and nonstructural’ mitigation approaches for hazard mitigation. Also, this study discusses a new measurement of locational aspects and spatial patterns of green infrastructure by utilizing high-resolution data in urban areas, and its potential implementation in hazard mitigation. Compared to previous research using land-use land-cover datasets, the normalized difference vegetation index (NDVI) utilizing National Agriculture Imagery Program dataset provides an ability to capture green infrastructure in greater detail. A visual comparison suggests that the NDVI data are able to capture and identify more types of ‘green’ land uses in Harris County. The total green infrastructure percentages for Harris County, Texas, based on 1-m high resolution were found to be 61.5% of the area, compared to the 51.5% based on the National Land Cover Database. This study provides support for utilizing high-resolution data to establish guidelines for green infrastructure’s spatial characteristics and sustainable hazard mitigation. The outcomes of this study will be helpful in the strategic planning and implementation of green infrastructure in urban areas with hazard issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号