Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradative enzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria. 相似文献
The paper focuses on current mechanical waste processing technologies and out-of-the-box processes linked to the processing of coal and mineral resources, to ensure high-quality feedstock recycling of polyolefin-rich post-consumer plastic fractions. Moreover, the study aims to provide the basis for the technical and economic feasibility of the chemical recycling route of this plastic fraction. When evaluating common mechanical processes, either dry or wet ones, sink–float separation in a cylindrical centrifugal force separator achieves the best results. It combines the advantages of a simple, robust apparatus of low complexity and high capacity with selective separation through the accelerated settling of particles in the centrifugal field. Furthermore, the disconnection of the separation medium feed from the solid input increases residence times. Based on the above findings, a pilot-scale plant was constructed which consists of a centrifugal force separator and a hydro jig for the pre-separation of heavy waste components. Several test campaigns were conducted to separate polyolefins from various waste fractions. Two-stage processing in the centrifugal force separator rendered almost 90 wt% of polyolefin content in the produced lightweight fraction and of polyolefin recovery. One-stage processing, on the other hand, resulted in reduced polyolefin content in the lightweight fraction.
Environmental Sensitivity Indices (ESI) composed of many field-data are essential for monitoring and control systems. At the
beginning of the last decade an ESI of the German Wadden Sea was developed for use by the relevant authorities. This ESI was
derived by experts semi-manually analysing the extensive field data-set.
An algorithm is presented here which emulates human expert-decisions on the classification of sensitivity classes. This will
permit the necessary regular updates of ESI-determination when new field data become available using automated classifications
procedures. After tuning the algorithm parameters it generates decisions identical to those of human experts in about 97%
of all locations tested. In addition, the algorithm presented also enables erroneous or extremely seldom field data to be
identified. 相似文献
The main objective of this paper is the presentation of water scarcity and water quality problems of fishery and fishermen in the southern Aral Sea region Kazakhstan. We tried in the past to inform interested people about our suggestions how to rehabilitate the situation, how to produce relatively enough fish for the functioning of local fish processing industry and to give people jobs, but we were unable so far to convince decision makers about innovations needed. It is essential therefore to reiterate some of the well-known problems of the region, called the Aral Sea crisis, but we concentrate mostly on the problems for the fishermen. While we do this, we understand, however, that the problem requires solution within the concept of a socioeconomic sustainable development for which we suggest the development of a decision support system based upon a computer simulation model providing optimal solutions. 相似文献
Clearing for large-scale soy production and the displacement of cattle-breeding by soybeans are major features of land-use change in the lowland Amazon that can alter hydrologic properties of soils and the runoff generation over large areas. We measured infiltrability and saturated hydraulic conductivity (Ksat) under natural forest, pasture, and soybeans on Oxisols in a region of rapid soybean expansion in Mato Grosso, Brazil. The forest-pasture conversion reduced infiltrability from 1258 to 100 mm/h and Ksat at all depths. The pasture-soy conversion increased infiltrability from 100 to 469 mm/h (attributed to shallow disking), did not affect Ksat at 12.5 cm, but decreased Ksat at 30 cm from 122 to 80 mm/h, suggesting that soybean cultivation enhances subsoil compaction. Permeability decreased markedly with depth under forest, did not change under pasture, and averaged out at one fourth the forest value under soybeans with a similar pattern of anisotropy. Comparisons of permeability with rainfall intensities indicated that land-use change did not alter the predominantly vertical water movement within the soil. We conclude that this landscape is well buffered against land-use changes regarding near-surface hydrology, even though short-lived ponding and perched water tables may occur locally during high-intensity rainfall on pastures and under soybeans. 相似文献