首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11722篇
  免费   17篇
  国内免费   91篇
安全科学   106篇
废物处理   938篇
环保管理   1479篇
综合类   1214篇
基础理论   3448篇
环境理论   1篇
污染及防治   2486篇
评价与监测   1177篇
社会与环境   966篇
灾害及防治   15篇
  2023年   11篇
  2022年   33篇
  2021年   36篇
  2020年   12篇
  2019年   42篇
  2018年   1515篇
  2017年   1405篇
  2016年   1254篇
  2015年   177篇
  2014年   80篇
  2013年   183篇
  2012年   567篇
  2011年   1459篇
  2010年   777篇
  2009年   716篇
  2008年   999篇
  2007年   1359篇
  2006年   129篇
  2005年   132篇
  2004年   137篇
  2003年   158篇
  2002年   185篇
  2001年   76篇
  2000年   45篇
  1999年   26篇
  1998年   29篇
  1997年   23篇
  1996年   16篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   10篇
  1991年   19篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1986年   7篇
  1985年   8篇
  1984年   18篇
  1983年   15篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Surface treated macro and nanoparticle TiO2 samples have been prepared, characterised and their efficiency as UV blockers evaluated in clear coatings and paints. The particle size of the ‘base’ TiO2 has been optimised to block UV radiation and the surface treatment developed to deactivate the photocatalytic activity of the surface of the TiO2 particles. The resultant UV blockers have been evaluated in both solvent and water-based clear coatings. Nanoparticle TiO2 has been prepared from ‘seed’ and the particle size was controlled by calcination. It was found that the choice of particle size is a compromise between UVA absorption, UVB absorption, visible transmission and photoactivity. It has been demonstrated that TiO2 with a crystallite size of 25 nm yields a product with the optimum properties. A range of dispersants was successfully used to disperse and mill the TiO2. Both organic and inorganic dispersants were used; 2-amino-2-methyl-1-propanol and 1-amino-2-propanol (MIPA) and P2O5 and Na2SiO3 respectively. The surface of the nano-TiO2 was coated with mixed oxides of silicon, aluminium, zirconium and phosphorous. Addition of the resultant coated nano-rutiles to an Isocyanate Acrylic clear coating prolonged the lifetime of that coating compared to the blank. Generally, a surface treatment based on SiO2, Al2O3 and P2O5 was more successful than one based on ZrO2, Al2O3 and P2O5. Higher addition levels of the surface treatment were beneficial for protecting the polymeric coating. The UV blocker products were also evaluated in a water-based acrylic, first a water-based dispersion of the UV blocker was prepared before addition to the acrylic. The dispersions and resultant acrylic thin films were evaluated using UV/Vis spectroscopy and durability assessed. The ratio of absorbance at 300:500 nm for the water-based dispersion was shown to be a good predictor of both the transparency of the resultant acrylic thin film and the durability of that film, in terms of weight loss. Macro grade titanium dioxide pigments were also prepared and coated with treatments of silica, alumina and siloxane and their photo-stabilising activity in alkyd paint film assessed and found to be directly related to the electron–hole pair mobility and trapping as determined by micro-wave spectroscopy.  相似文献   
132.
The objective of this work was to improve the impact and thermal properties of polylactic acid (PLA)-based biocomposite by appropriate application of cellulosic fiber and a bioelastomer. Biocomposites formulations with fiber contents of up to 20% in combination with a bioelastomer were extrusion-compounded in a twin-screw extruder followed by molding in an injection molding system. Fibers used in the formulations included three types of cellulosic fiber; namely, raw fiber from oat hull biomass (RF), hydrolysis byproduct (ATF) which was the solid fraction obtained from an acid-catalyzed hydrolysis of RF, and delignified fibers (AD30, AD65, AD100) which were the products of delignification of ATF. Formulated biocomposites were characterized for thermal (glass transition and melting temperatures, and enthalpy of melting) and physico-mechanical (tensile and bending strengths, stiffness, impact energy, and water absorption) properties. Among all types of biofibers, RF resulted in poor properties in the biocomposites due to the high hemicellulose content in the structure. On the other hand, the ratio of lignin to cellulose (in the absence of hemicellulose) in the modified fibers did not significantly affect the physico-mechanical and thermal properties of the biocomposites. The elastomer applied in the formulations improved the impact energy, thermal properties, and elongation at break of the composites. However, it adversely affected the strength and water resistance of biocomposites, especially in the presence of hemicellulose. The results indicated that, depending on the application, a wide range of PLA green composites with different physico-mechanical properties can be achieved.  相似文献   
133.
In this work, performance of cow dung (CD) reinforced poly(lactic acid) (PLA) biocomposites was investigated for the potential use in load bearing application. CD of average 4 mm size was blended with PLA at different CD ratios (0–50 wt%) and their effects on the biocomposite properties were studied. The results showed an improvement in the flexural properties, while the tensile and impact strength dropped by 20 and 28% with the addition of 50% CD. The decline in the tensile and impact strength was due to micro-cracking and voids formation at higher CD content. Also, the incorporation of CD slightly decreased the thermal stability of the biocomposite. However, dynamic mechanical properties of the biocomposites generally improved. SEM analysis of tensile and impact fractured surfaces indicated that the CD had a reasonable adhesion with matrix. Moreover, the SEM micrographs of soil burial studies showed an accelerated degradation of higher CD wt% biocomposites.  相似文献   
134.
The present study investigated the occurrence of polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in soil, water, reed, air and dust samples collected from the e-waste recycling region in Ziya Town, Northern China. The results showed that the concentrations of PCBs reached relative high level in environmental matrices in the study area. HFRs including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), allyl 2,4,6-tribromophenyl ether (ATE), tetrabromoethylcyclohexane (TBECH), pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE), 1,2-bis-(2,4,6-tribromophenoxy) ethane (BTBPE) and so on were also widely detected in multi-matrices. Long-range atmospheric transport (LRAT) potentials of non-BDE HFRs were assessed to address the LRAR abilities of these compounds. Analysis of soil–air exchange of PCBs and HFRs showed that soil acted as a secondary source to the atmosphere only for a few low molecular weight compounds, while the direction of the flux of most detected chemicals was from air to soil.  相似文献   
135.
Natural rubber (NR) with polycaprolactone (PCL) core–shell (NR-ad-PCL), synthesized by admicellar polymerization, was acted as an impact modifier for poly(lactic acid) (PLA). PLA and NR-ad-PCL were melt-blended using a co-rotating twin screw extruder. The morphology of PLA/NR-ad-PCL blends showed good adhesion as smooth boundary around rubber particles and PLA matrix. Only 5 wt% of rubber phase, NR-ad-PCL was more effective than NR to enhance toughness and mechanical properties of PLA. The contents of the NR-ad-PCL were varied from 5, 10, 15 and 20 wt%. From thermal results, the incorporation of the NR-ad-PCL decreased the glass transition temperature and slightly increased degree of crystallinity of PLA. Mechanical properties of the PLA/NR-ad-PCL blends were investigated by dynamic mechanical analyser, pendulum impact tester and universal testing machine for tension and flexural properties. The increasing NR-ad-PCL contents led to decreasing Young’s and storage moduli but increasing loss modulus. Impact strength and elongation at break of the PLA/NR-ad-PCL blends increased with increasing NR-ad-PCL content up to 15 wt% where the maximum impact strength was about three times higher than that of pure PLA and the elongation at break increased to 79%.  相似文献   
136.
Chitin has been produced from different sea waste sources including, molluscs (mussel and oyster shell), crustacean (prawn and crab) and fish scale (pang and silver scales) using deproteinization and demineralization as chemical methods. The conditions of chemical extraction process determine the quality of chitin. The obtained results revealed that, about 1 and 10% HCl and NaOH were adequate concentrations for deproteinization and demineralization process respectively. Chitin from oyster and crab shell waste had the highest yield of 69.65 and 60.00% while prawn, mussel shell, pang and silver scales had the lowest yield of 40.89, 35.03, 35.07 and 31.11% respectively. Chitin solubility is controlled by the quantity of protonated acetyl groups within the polymeric chain of the chitin backbone, thus on the percentage of acetylated and non-acetylated d-glucos-acetamide unit. Good solubility results were obtained in mussel, oyster and crab shells respectively. The chitin molecular weight characteristics and activity are controlled by the degree of acetylation (DA) and the distribution of acetyl group extending in the polymer chain. DA is determined by acid-base titration methods and molecular weight determined by Brookfield viscometry. Both methods are found to be effective.  相似文献   
137.
Natural fibers are limited in their use as reinforcement to commodity polymers. They cannot be used to reinforce engineering polymers due to their low thermal stability at high processing temperatures. This study presents an approach to successfully reinforce polyamides using a derivative of natural fibers as reinforcement without the effects of thermal degradation during melt processing. Biocarbon from miscanthus fibers was used to reinforce polyamide 6 up to 40 wt%. At 40 wt% filler content, the tensile and flexural strengths increased by 19.6 and 47% respectively in comparison to the neat polyamide. The moduli were also increased by 31.5 and 63.7% respectively. A maximum increase in impact strength of 43.7% was achieved at 20 wt% biocarbon loading. The morphology of the tensile fractured samples showed stretched polyamide ligaments attached to the biocarbon particles, indicating the presence of interaction between filler and matrix. Interestingly, more bonded interfaces were observed between the polyamide and biocarbon particles with increasing biocarbon content possibly stemming from increased biocarbon surfaces with functional groups. These composites show great potential to substitute in part or whole, some particulate filled polyamides currently used in the automotive industry.  相似文献   
138.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   
139.
140.
Animal welfare involves societal and human values, ethical concerns and moral considerations since it incorporates the belief of what is right or what is wrong in animal treatment and care. This paper aims to ascertain whether the different dimensions of individual attitudes toward animal welfare in food choices may be characterized by general human values, as identified by Schwartz. For this purpose, an EU-wide survey was carried out, covering almost 2500 nationally representative individuals from five European countries. Compared with the previous literature this study shows a twofold novelty: (1) it develops a general framework to link individual enduring beliefs and attitudes toward animal welfare attributes in food choices; (2) the framework is analyzed within a broad-based cross-country study. Our empirical results prove that human values related to self-transcendence are strongly associated to overall animal welfare attitudes and especially to those explicitly related to food choices, while values related to the spheres of self-enhancement and conservatism are significantly associated to less sensitive attitudes to animal welfare. Moreover, our results appear to indicate that a determinant of animal welfarism in food choices is potentially associated to individual concerns regarding food safety issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号