首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   26篇
  国内免费   19篇
安全科学   65篇
废物处理   90篇
环保管理   245篇
综合类   320篇
基础理论   323篇
环境理论   3篇
污染及防治   467篇
评价与监测   146篇
社会与环境   96篇
灾害及防治   6篇
  2023年   20篇
  2022年   34篇
  2021年   41篇
  2020年   27篇
  2019年   29篇
  2018年   46篇
  2017年   47篇
  2016年   53篇
  2015年   48篇
  2014年   68篇
  2013年   98篇
  2012年   85篇
  2011年   115篇
  2010年   87篇
  2009年   84篇
  2008年   83篇
  2007年   101篇
  2006年   71篇
  2005年   71篇
  2004年   72篇
  2003年   54篇
  2002年   55篇
  2001年   44篇
  2000年   22篇
  1999年   20篇
  1998年   24篇
  1997年   18篇
  1996年   21篇
  1995年   19篇
  1994年   18篇
  1993年   13篇
  1992年   16篇
  1991年   8篇
  1990年   16篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   11篇
  1985年   13篇
  1984年   14篇
  1983年   11篇
  1982年   10篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1975年   3篇
  1974年   3篇
  1972年   4篇
  1968年   3篇
排序方式: 共有1761条查询结果,搜索用时 15 毫秒
71.
The impact of several factors on the assimilation efficiency (AE) of Cd and Zn from food in the common carp (Cyprinus carpio) was studied. Tested prey species were midge larvae (Chironomus riparius), zebra mussels (Dreissena polymorpha) and oligochaetes (Tubifex tubifex). The Cd load of the larvae did not affect the Cd AE in the carp. The Zn AE however, was negatively related to the Zn load of the prey. Food quantity and starvation of the carp did not significantly affect the Cd AE. For Zn, a significant decrease in AE was found when carp were fed ad libitum. Decreasing the temperature from 25 degrees C to 15 degrees C did not influence the Cd AE, while for Zn a significant decrease of the AE was measured. Carp assimilated Cd from both zebra mussels and oligochaetes with a significantly lower efficiency in comparison to the midge larvae, although Zn AEs was prey independent.  相似文献   
72.
Sulfur pollution can lead to serious problems in freshwater wetlands, including phosphorus eutrophication and sulfide toxicity. We tested the effects of anaerobic iron-rich groundwater discharge in fens, simulated by iron injection, on two characteristic species (Juncus effusus and Caltha palustris) in a sulfidic environment. Biomass production of C. palustris roots showed an optimum response to the combined addition of iron and sulfide, with highest values at intermediate concentrations of both substances. Iron deficiency apparently occurred at low iron concentrations, while at high iron concentrations, growth was decreased. For J. effusus, in contrast, no toxic effects were found of both iron and sulfide. This could be explained by larger radial oxygen loss (ROL) of J. effusus and could not be explained by differences in phosphorous concentrations. The results of our experiments confirm that iron-rich groundwater discharge has the potential to affect vegetation composition through toxicity modification in sulfidic environments.  相似文献   
73.
Occurrence and fate of alkylphenols (APs), known endocrine disruptors, were investigated in a Great Lakes coastal wetland, Cootes Paradise, ON. The wetland, which receives discharges from a Wastewater Treatment Plant (WTP) and several Combined Sewer Overflows (CSOs), is an important spawning ground for fish and crucial habitat for other fauna. Elevated concentrations of nonylphenol ethoxylates (NPEs) and their degradation product nonylphenol (NP) were found in water and sediment samples near the sources. Since transfer of APs through the food chain is of concern, we compared their concentrations in invertebrates from clean and contaminated sites. The results reveal transfer of alkylphenolics from sediments to biota and their accumulation in the invertebrate tissue, particularly the highly hydrophobic 4-NP, whose concentrations ranged from 1.9 to 6.3 microg g(-1). To our knowledge, this is the first study to evaluate AP concentrations in tissue of benthic invertebrates under real environmental conditions.  相似文献   
74.
Bioremediation process on Brazil shoreline   总被引:1,自引:0,他引:1  
GOAL, SCOPE AND BACKGROUND: Bioremediation technique can be considered a promising alternative to clean oil spills using microbial processes to reduce the concentration and/or the toxicity of pollutants. To understand the importance of this work we must know that there is only little research performed to date using bioremediation techniques to clean oil spills in tropical countries. So, the main objective of this work is to analyze the behavior of a laboratory's bioremediation test using nutrients on coastal sediments. METHODS: The bioremediation process is followed through geochemical analysis during the tests. This organic material is analyzed by medium pressure liquid chromatography (MPLC), gas chromatography/flame ionization detection (GC/FID) and gas chromatography/ mass spectrometry. By microbial counting, the number of total bacteria and degrading bacteria is determined during the experiments, in order to confirm the effectiveness of the bioremediation process. The seawater obtained throughout the bioremediation process is analyzed for nutrients grade (phosphate and ammonium ions) and also for its toxicity (Microtox tests) due the presence of hydrocarbons and fertilizer. RESULTS: The results from the geochemical analyses of the oil show a relative decrease in the saturated hydrocarbon fraction that is compensated by a relative enrichment on polar compounds. It's confirmed by the fingerprint evaluation where it is possible to see a complete reduction of the normal alkanes followed by isoprenoids. Seawater analysis done by toxicity and nutrients analysis, such as microbial counting (total and degrading bacteria), confirm the fertilizer effectiveness during the bioremediation process. DISCUSSION: Results from simulating test using NPK, a low-price plant fertilizer, suggest that it's able to stimulate the degradation process. Results from medium pressure liquid chromatography (MPLC), done at two different depths (surface and subsurface), show different behavior during the biodegradation process where the later is seen to be more susceptible to microbial attack. Data from bioremediation unit shows a bigger reduction of the saturated fraction, followed by some smaller reduction of aromatic fractions, compensated by a relative increase from polar compounds (NSO). n-C17/pristane, n-C18/ fitane and pristane/fitane rates show constant values for the unity control, different from bioremediation samples which have a significant reduction, especially on subsurface areas, where a strong fall in the rates, seen to be reduced to zero over twenty days, had occurred during the first ten days. However, sample surfaces are reduced to zero in thirty days of experiments, proving that biodegradation is better on subsurfaces. Gaseous chromatography/mass spectrometry (CG/MS) analysis shows constant values to cyclic biomarker rates and aromatic compounds, suggesting that the biodegradation process is not strong enough to reduce these composites. Microbial analysis shows a reduction on heterotrophic (total bacteria) number from control unit, probably because the bacteria uses the spill oil like carbon source and energy. However, the number increases on bioremediation unit, because it uses NPK like a biostimulator. The hydrocarbonoclastic number isn't enough on the first moment, but it's detected after 30 days and quantified in all units, showing big values especially in bioremediation. Toxicity tests confirm that NPK fertilizer does not intoxicate the shoreline during the application of the bioremediation technique. Some nutrient concentration shows high values of ammonium and phosphate per bioremediation unit, reducing by the end of the experiment. CONCLUSIONS: Results reached the goal, finding a proper nutrient (NPK fertilizer) to stimulate the biodegradation process, growing bacteria responsible for reducing impact-contaminated coast ambient by oil spills. Chemical analysis of oil shows a reduction in the saturated fraction with a relative enrichment in polar composites (NSO) and the aromatic fraction from oil remaining constant. Subsurface samples show more biodegradation than surface samples, probably because the first one has higher humidity. Linear alcanes are more biodegraded than isoprenoids, confirming the biodegradation susceptibility order. Saturated cyclic biomarkers and aromatic compounds show constant behavior maybe because the nutrients or time was not enough for microorganismic attack. Fertilizer does not demonstrate any toxic effects in local biota so that it does not compromise the technique applicability and the environment is not saturated by nutrients during the simulation, especially since the coastal environment is an open system affected daily by tides. Therefore, bioremediation tests can be classified as moderate, reaching level 5 in the classification scale by Peters & Moldowan (1993). RECOMMENDATIONS AND PERSPECTIVES: The use of marine environment by the petroleum industry on exploration, production and transportation operation, transform this oil to become the most important pollutant in the oceans. Bioremediation is an important technique used to clean spilled oil impacting on shorelines, accelerating the biodegradation process by using fertilizer growing the microorganisms responsible for decontaminating the environment. We recommend confirming the efficiency of NPK nutrient used on bioremediation simulating experiments on beaches, while monitoring the chemical changes long-term. NPK fertilizer can be used to stimulate the biodegradation process on shoreline impacted by spilled oil.  相似文献   
75.
This study aims to verify the effects of the clomazone concentration used in rice fields on acetylcholinesterase (AChE), thiobarbituric acid reactive substances (TBARS), protein carbonyl and catalase activity in tissues of piava (Leporinus obtusidens). LC(50)-96h was 5.0 mg L(-1) and the fish were exposed to 1/10 of LC(50)-96 h: 0.5 mg L(-1) of clomazone for 96 and 192h. The same parameters were also assayed after a recovery period of 192 h in clean water. AChE activity was reduced only in the brain and heart of fish exposed for 96 h. AChE activity was decreased in the brain, muscle and heart tissues after 192 h of exposure. After 192 h of recovery period, AChE activity remained diminished in brain and muscle and showed a decrease in eye. However, after 192 h of recovery, AChE activity in heart was recovered. Fish showed increased TBARS levels in brain at all experimental periods. TBARS levels decreased in liver and muscle tissues after 192 h of exposure. The increase in muscle TBARS persisted in fish transferred to clean water. Protein carbonyl in the liver was increased in all periods studied including the recovery period. Catalase activity was reduced during all periods. The present study demonstrates the occurrence of disorders in AChE, TBARS, protein carbonyl and catalase activity in piava. The results also show changes in fish after exposure to an environmentally relevant concentration of clomazone. Most effects observed persisted after the recovery period. Thus, these parameters may be used to monitor clomazone toxicity in fish.  相似文献   
76.
Duarte B  Reboreda R  Caçador I 《Chemosphere》2008,73(7):1056-1063
The influence of salt marsh sediment extracellular enzymatic activity (EEA) on metal fractions and organic matter cycling was evaluated on a seasonal basis, in order to study the relation between organic matter cycles and the associated metal species. Metals in the rhizosediment of Halimione portulacoides were fractioned according to the Tessier's scheme and showed a similar pattern regarding the organic-bound fraction, being always high in Autumn, matching the season when organic matter presented higher values. Both organic-bound and residual fractions were always dominant, being the seasonal variations due to interchanges between these two fractions. Phenol oxidase and beta-N-acetylglucosaminidase had higher activities during the Spring and Summer, contrarily to peroxidase which had higher activity during Winter. Protease showed high activities in both Spring and Winter. These different periods of high organic matter hydrolysis caused two periods of organic metal bound decrease. Sulphatase peaks (Spring and Winter) matched the depletion of exchangeable metal forms, probably due to sulphides formation and consequent mobilization. This showed an interaction between several microbial activities affecting metal speciation.  相似文献   
77.
Mixtures of poly-β-(hydroxybutyrate-co-valerate) PHB-V with virgin and post-consumer low density polyethylene (LDPE) were prepared by melt mixing in proportions of 100/0, 90/10, 80/20, 70/30 and 0/100 (wt/wt%). The mixtures were analysed by infrared spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), melting flow index (MFI), tensile tests, scanning electron microscopy (SEM) and biodegradation in simulated soil. The DMTA and DSC curves of post-consumer LDPE suggested that this polymer was a mixture of LDPE and linear low density polyethylene (LLDPE). Virgin and post-consumer LDPE had lower MFI than PHB-V, but the blends showed higher index as the content of LDPE increased. The addition of LDPE reduced the tensile strength and Young’s modulus of the mixtures compared with PHB-V. SEM indicated poor interfacial adhesion between PHB-V and LDPE. PHB-V degraded slow and gradually, while both LDPE showed virtually no degradation under the conditions studied. The biodegradability of the blends depended on their composition and of the type of LDPE. LDPE improved the biodegradability of the mixtures.  相似文献   
78.
 Various developmental stages (early larvae to adults) of Euphausia superba have been collected in different seasons in the Weddell Sea, the Lazarev Sea and off the Antarctic Peninsula to investigate the role of lipids and fatty acids in the life cycle of the Antarctic krill. The total-lipid data for E. superba exhibited seasonal variations, with low lipid levels in late winter/early spring and the highest levels in autumn. Seasonal changes were most pronounced in the immature and adult specimens, increasing from about 10% lipid of dry mass to more than 40%. The fatty-acid compositions of the younger stages were dominated by 20:5(n-3), 22:6(n-3) and 16:0. These are typical phospholipid fatty acids, which are major biomembrane constituents. The phospholipid composition was similar in the older stages. With increasing storage of triacylglycerols in the lipid-rich immature and adult stages, the fatty acids 14:0, 16:0 and 18:1(n-9) prevailed, comprising about 70% of total triacylglycerol fatty acids. The trophic-marker fatty acids 16:1(n-7) and 18:4(n-3), indicating phytoplankton ingestion, were less abundant. They reflected, however, the dependence of the larvae on phytoplankton as well as the seasonal changes in algal composition. The generally close linear relationships between fatty acids and lipid suggest that the fatty-acid compositions of the collected specimens were largely independent of the respective developmental stage, season and region. The linear fit indicates that triacylglycerol accumulation started at a level of about 5% of total lipid. Considering the various overwintering scenarios under discussion, the life cycle and reproductive strategies of krill are discussed in the context of the lipid metabolism and fatty-acid composition of E. superba. Lipid production is effective enough to accumulate large energy reserves for the dark season, but E. superba does not exhibit the sophisticated biosynthetic pathways known from other Antarctic euphausiids and copepods. Although important, lipid utilisation appears to be just one of several strategies of E. superba to thrive under the extreme Antarctic conditions, and this pronounced versatility may explain the success of this species in the Southern Ocean. Received: 16 June 2000 / Accepted: 18 December 2000  相似文献   
79.
 Juvenile and adult marine organisms differ in their morphology, chemistry, physiology, behavior, and ecology. Because juvenile algae are thinner, smaller, and have more delicate tissues than adults, they are often assumed to be more susceptible to grazers. We examined within-species food preferences of four common generalist herbivores for juvenile and adult tissues of eight common brown algae in two-choice laboratory food-preference experiments. Our results showed that juvenile algae did not tend to be a preferred food of herbivores. Juvenile tissues were significantly preferred over adult tissues in only four of the 32 combinations of algae and herbivores tested. In 12 experiments, adult tissues were preferred over juvenile tissues, and no choice occurred in the remaining 16 experiments. When sea urchins exhibited a preference, it was always for adult tissues. The other three herbivores, an isopod and two snails, were more variable in their choices, sometimes preferring juveniles, sometimes adults, and sometimes having no preference. We measured nitrogen and phlorotannin concentrations in adult and juvenile seaweeds to see whether these parameters were correlated with herbivore food preferences. Nitrogen levels were similar in juveniles and adults of three algal species and were higher in juveniles of two. Phlorotannin levels were higher in juveniles of four species and lower in juveniles of one. The other three species showed no differences in phlorotannin levels. Phlorotannin concentrations decreased with increasing juvenile size in three species and increased with increasing size in one species. Neither nitrogen nor phlorotannin concentrations explained overall herbivore food preferences for algae of different stages. Our results suggest that preferences of certain grazers for juvenile algae are not as strong as previously assumed and are dependent on herbivore species. Preferences between juveniles and adults are likely to be determined by a combination of morphological and chemical features of the tissues and the unique responses of herbivore species to those features. Received: 10 April 2000 / Accepted: 19 November 2000  相似文献   
80.
 A distinct smell of dimethylsulfide (DMS) was noted at the edge of the intertidal mudflat of Marennes-Oléron Bay, at the French Atlantic coast, where dense populations of the marine flatworm Convoluta roscoffensis Graff (Platyhelminthes: Turbellaria) were present. DMS is the cleavage product of dimethylsulfoniopropionate (DMSP). DMSP was shown to be present in high amounts in sediment containing the flatworm as well as in axenic cultures of the symbiotic alga Tetraselmis sp. that was isolated from the flatworm. In untreated sediment samples containing C. roscoffensis the concentration of DMS was as high as ∼55 μmol l−1 sediment, and in samples that were fixed with glutaraldehyde the concentration of DMS was even three orders of magnitude higher (∼66 mmol l−1 sediment). This rapid cleavage of DMSP to DMS in fixed samples was unexpected. Pure DMSP was stable in glutaraldehyde, and it was therefore concluded that a DMSP-lyase was responsible for cleavage in the field samples. The isolated symbiotic alga, Tetraselmis sp., did not show DMSP-lyase activity, indicating that DMSP-lyase may have been present in the flatworm, although the role of bacteria could not be excluded. The Chl a-specific DMSP content of C. roscoffensis (∼200 mmol g−1) was much higher than that of Tetraselmis sp. (∼30 mmol g−1). Possibly, DMSP was not only present in the symbiotic alga, but was also incorporated in the body tissue of the flatworm. It remains unclear what the function of DMSP is in C. roscoffensis. In Tetraselmis sp., but not in C. roscoffensis, DMSP increased with increasing salinity. It was concluded that salinity probably does not play an important role in the dynamics of DMSP and DMS in sediment containing C. roscoffensis. Received: 21 January 2000 / Accepted: 29 August 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号