首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   3篇
  国内免费   15篇
安全科学   14篇
废物处理   52篇
环保管理   15篇
综合类   275篇
基础理论   51篇
污染及防治   110篇
评价与监测   17篇
社会与环境   17篇
灾害及防治   5篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   32篇
  2012年   14篇
  2011年   19篇
  2010年   19篇
  2009年   28篇
  2008年   23篇
  2007年   25篇
  2006年   17篇
  2005年   17篇
  2004年   20篇
  2003年   10篇
  2002年   15篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1997年   5篇
  1996年   2篇
  1995年   49篇
  1994年   28篇
  1993年   40篇
  1992年   46篇
  1991年   28篇
  1990年   16篇
  1989年   9篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1971年   1篇
  1969年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有556条查询结果,搜索用时 31 毫秒
481.
Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca2+ as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)2 by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)2 and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)2 and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)2 or other alkaline substances.  相似文献   
482.
483.
Decades-long monitoring of anthropogenic radionuclides in the atmospheric deposition in Tsukuba, Japan suggests not only the substantial impacts of the Asian dust (Kosa) on the deposition but also the possible change of the Kosa source region, especially during springs of the 2000s. In order to know more about such change, 4 single wet deposition events occurred in the spring of 2007 were scrutinized. The largest anthropogenic radionuclides wet deposition was supplied by the April 2–4 event. It brought several tens % of the monthly depositions (April 2007) of the dust (residue) mass (4.5 g m?2) and anthropogenic radionulides (90Sr: 16, 137Cs: 97 and Pu: 3 mBq m?2). None of the events observed fulfilled both criteria of the specific activities and 90Sr/137Cs activity ratio to the Tsukuba soil; they did not exhibit local soil dust signature. The Kosa events in fact have extensive impacts on the atmospheric environment over Japan in spring season. Considering the elevated specific activities as well as greater 137Cs/90Sr activity ratio in the deposited dust, it is hypothesized that the dust source areas in Asian continent would be shifting from the arid zone to the desert-steppe zone suffering from desertification during the 2000s. This type of the Kosa may be called as the ‘new-regime Kosa’. Chemical observation in the far downwind region of the Kosa dust could allow us to know possible shift in the source regions.  相似文献   
484.
In this study, occurrence of 66 PPCPs (pharmaceuticals and personal care products) in liquid and solid phases of sewage sludge was elucidated. The extraction methods for the PPCPs from sludge were newly developed employing Pressurized Liquid Extraction (PLE) and Ultrasonic Solvent Extraction (USE). As an appropriate method, PLE using water (pH2), PLE using methanol (pH4), and USE using mixture of methanol and water (1/9,v/v, pH11) was found most effective because total recovery of most of the PPCPs indicated 40 to 130%. The developed extraction method with previously developed method for liquid phase analysis was applied to field survey at wastewater treatment plants (WWTPs) in Japan. 56 compounds were detected from the primary sludge and 61 compounds were detected from the excess sludge. The concentration was ranged between several ng/g and several μg/g. Solid-water distribution coefficient (Log Kd) ranged between 0.9 L/kg (Caffeine) and 3.7 L/kg (Levofloxacin) for primary sludge and between 1.4 L/kg (Sulpirid) and 4.3 L/kg (Mefenamic acid) for excess sludge.  相似文献   
485.
An investigation of water-soluble organic carbon (WSOC) in atmospheric particles was conducted as an index of the formation of secondary organic aerosol (SOA) from April 2005 to March 2006 at Maebashi and Akagi located in the inland Kanto plain in Japan. Fine (<2.1 μm) and coarse (2.1–11 μm) particles were collected by using an Andersen low-volume air sampler, and WSOC, organic carbon (OC), elemental carbon (EC), and ionic components were measured. The mean mass concentrations of the fine particles were 22.2 and 10.5 μg m?3 at Maebashi and Akagi, respectively. The WSOC in fine particles accounted for a large proportion (83%) of total WSOC. The concentration of fine WSOC ranged from 1.2 to 3.5 μg-C m?3 at Maebashi, rising from summer to fall. At Akagi, it rose from spring to summer, associated with the southerly wind from urban areas. The WSOC/OC ratio increased in summer at both sites, but the ratio at Akagi was higher, which we attributed to differences in primary emissions and secondary formation between the sites. The fine WSOC concentration was significantly positively correlated with concentrations of SO42?, EC, and K+, and we inferred that WSOC was produced by photochemical reaction and caused by the combustion of both fuel and biomass. We estimated that SOA accounted for 11–30% of the fine particle mass concentration in this study, suggesting that SOA is a significant year-round component in fine particles.  相似文献   
486.
To understand the characteristics of non-methane hydrocarbon (NMHC) abundance in an urban air of Nagoya, one of the metropolitan areas of Japan, 48 species of C2–C11 NMHCs were measured with a measurement system, developed in this study, by using gas chromatography with flame ionization detection (GC/FID) continuously for one year from December 2003 to November 2004.Annual mean concentration of NMHCs in normal and propylene equivalent (PE) in Nagoya was compared with those in four urban areas of Seoul, London, Lille, and Dallas to extract characteristics of urban air. While the absolute values of the normal and PE concentrations of alkanes, alkenes, alkyne, and aromatics were significantly different among these urban areas, the proportions of each chemical group to the total NMHC were not so different.In Nagoya, the total normal concentration was high from November to February and low from June to August. The pattern of the seasonal variation was influenced mainly by that of alkanes. On the other hand, the total PE concentration was high from July to December and low from January to June. The pattern of the seasonal variation was influenced mainly by those of alkenes and aromatics. Particularly the normal concentration of isoprene was high from May to September because of large emission associated with activity of plants. As the results, in summer, the PE concentration of isoprene was especially high, and its contribution to the total NMHCs measured in this study was approximately 40%. The total PE concentrations were high in summer when the concentration of OH radicals is also high, suggesting that the productions of ozone and secondary organic aerosol (SOA) are likely to be promoted in summer of Nagoya.  相似文献   
487.
Maki T  Hirota W  Motojima H  Hasegawa H  Rahman MA 《Chemosphere》2011,83(11):1486-1492
Aquatic arsenic cycles mainly depend on microbial activities that change the arsenic chemical forms and influence human health and organism activities. The microbial aggregates degrading organic matter are significantly related to the turnover between inorganic arsenic and organoarsenic compounds. We investigated the effects of microbial aggregates on organoarsenic mineralization in Lake Kahokugata using lake water samples spiked with dimethylarsinic acid (DMA). The lake water samples converted 1 μmol L−1 of DMA to inorganic arsenic for 28 d only under anaerobic and dark conditions in the presence of microbial activities. During the DMA mineralization process, organic aggregates >5.0 μm with bacterial colonization increased the densities. When the organic aggregates >5.0 μm were eliminated from the lake water samples using filters, the degradation activities were reduced. DMA in the lake water would be mineralized by the microbial aggregates under anaerobic and dark conditions. Moreover, DMA amendment enhanced the degradation activities in the lake water samples, which mineralized 50 μmol L−1 of DMA. The DMA-amended aggregates >5.0 μm completely degraded 1 μmol L−1 of DMA with a shorter incubation time of 7 d. The supplement of KNO3 and NaHCO3 to lake water samples also shortened the DMA-degradation period. Presumably, the bacterial aggregates involved in the chemical heterotrophic process would contribute to the DMA-biodegradation process in Lake Kahokugata, which is induced by the DMA amendment.  相似文献   
488.
The contribution of non-point sources to perfluorinated surfactants (PFSs) in a river was evaluated by estimating their fluxes and by using boron (B) as a tracer. The utility of PFSs/B as an indicator for evaluating the impact of non-point sources was demonstrated. River water samples were collected from the Iruma River, upstream of the intake of drinking water treatment plants in Tokyo, during dry weather and wet weather, and 13 PFSs, dissolved organic carbon (DOC), total nitrogen (TN), and B were analyzed. Perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUA), and perfluorododecanoate (PFDoDA) were detected on all sampling dates. The concentrations and fluxes of perfluorocarboxylates (PFCAs, e.g. PFOA and PFNA) were higher during wet weather, but those of perfluoroalkyl sulfonates (PFASs, e.g. PFHxS and PFOS) were not. The wet/dry ratios of PFSs/B (ratios of PFSs/B during wet weather to those during dry weather) agreed well with those of PFS fluxes (ratios of PFS fluxes during wet weather to those during dry weather), indicating that PFSs/B is useful for evaluating the contribution from non-point sources to PFSs in rivers. The wet/dry ratios of PFOA and PFNA were higher than those of other PFSs, DOC, and TN, showing that non-point sources contributed greatly to PFOA and PFNA in the water. This is the first study to use B as a wastewater tracer to estimate the contribution of non-point sources to PFSs in a river.  相似文献   
489.
Livestock wastewater is treated by activated sludge treatment. Untreated livestock wastewater has high estrogen activity because animal excreta contains estrogen. When activated sludge treatment is applied, the estrogen activity declines or is lost. However, the color of treated livestock wastewater is deep brownish-red because of the decomposition of organic compounds or the synthesis of metabolites. Discharging colored wastewater to the environment could cause some problems, so it is necessary to decolorize colored wastewater before it is discharged. It has been suggested that electrolysis decolorization technology is suitable for treating colored wastewater; however, the process produces volatile organic compounds (VOCs). In fact, little research has been conducted with reference to estrogen activity in wastewater that has undergone electrolysis, especially on the contribution of the electrolysis decolorization process to estrogen activity, i.e., the possibility of resynthesis of some substance with estrogen activity due to resolved and metabolized colored components. In this study, the concentration of VOC was measured for various electrolysis conditions, and estrogen activity was examined using a yeast two-hybrid assay. From the results, decolorization of colored livestock wastewater by electrolysis was possible, and the VOC generation during electrolysis could be controlled depending on the electrolysis conditions. Estrogen activity in colored livestock wastewater disappeared on electrolysis decolorization.  相似文献   
490.
Migration of 14C derived from 14C-acetic acid was examined by using soils sampled from paddies in four administrative areas in Japan (Aomori, Yamanashi, Ehime and Okinawa) and rice plant in a tracer experiment to understand the fate of 14C in the paddy soil-to-rice plant system. The loss of 14C radioactivity levels derived from 14C-acetic acid was caused by soil microorganism breakdown. A part of the 14C fixation to soil was caused by microbial assimilation into the fatty acid fraction. 14C moved upward via two different types of 14C dynamics in soil: quick movement upward; and constant but slow movement upward. 14C was highly assimilated into the plant panicle and that was caused by the root-uptake and the transfer of 14C. Migration of 14C derived from 14C-acetic acid relied heavily upon changes of chemical forms and characteristics of 14C-compound as caused by microorganisms in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号