首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   7篇
  国内免费   21篇
安全科学   16篇
废物处理   30篇
环保管理   30篇
综合类   86篇
基础理论   49篇
污染及防治   113篇
评价与监测   24篇
社会与环境   10篇
灾害及防治   3篇
  2023年   7篇
  2022年   11篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   11篇
  2017年   15篇
  2016年   13篇
  2015年   14篇
  2014年   14篇
  2013年   24篇
  2012年   20篇
  2011年   24篇
  2010年   15篇
  2009年   19篇
  2008年   24篇
  2007年   16篇
  2006年   19篇
  2005年   13篇
  2004年   8篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
  1964年   1篇
  1961年   1篇
  1958年   2篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
291.
Lee JH  Zhou JL  Kim SD 《Chemosphere》2011,85(8):1383-1389
The removal of 17β-estradiol (E2) by biodegradation and sorption onto humic acid (HA) was examined at various HA concentrations. Subsequently, estrogenicity associated with E2 removal was estimated using E-screen bioassay. Results showed that E2 biodegradation and its subsequent transformation to estrone (E1) were significantly reduced with increasing HA concentration. In addition, the presence of nutrients enhanced the biodegradation of E2. Overall, E2 biodegradation was the dominating contributor to its removal, which demonstrated a significantly negative correlation with E2 sorption at various HA concentrations. The sorption of E2 by HA was significantly enhanced with increasing HA concentration. Estrogenicity associated with residual E2 showed that there existed a significant difference among various HA concentrations, with the lowest value in the absence of HA. The findings suggest that the presence of HA and nutrients in natural waters should be considered in assessing estrogenicity of environmental samples due to complex sorption and biodegradation processes.  相似文献   
292.
Environmental pollution with petroleum products such as benzene, toluene, ethylbenzene, and xylenes (BTEX) has garnered increasing awareness because of its serious consequences for human health and the environment. We have constructed toluene bacterial biosensors comprised of two reporter genes, gfp and luxCDABE, characterized by green fluorescence and luminescence, respectively, and compared their abilities to detect bioavailable toluene and related compounds. The bacterial luminescence biosensor allowed faster and more-sensitive detection of toluene; the fluorescence biosensor strain was much more stable and thus more applicable for long-term exposure. Both luminescence and fluorescence biosensors were field-tested to measure the relative bioavailability of BTEX in contaminated groundwater and soil samples. The estimated BTEX concentrations determined by the luminescence and fluorescence bacterial biosensors were closely comparable to each other. Our results demonstrate that both bacterial luminescence and fluorescence biosensors are useful in determining the presence and the bioavailable fractions of BTEX in the environment.  相似文献   
293.
格林威治湾是纳拉甘西特湾一处受到多种影响因子作用的城市化形成港湾。本研究鉴定了对于格林威治湾底栖动物的重要影响因素。首先利用现存数据与信息来验证水体受损情况。其次确定了影响来源,影响因素和具体影响的存在。继而探究了来源,影响因素和具体影响之间的关系。这使我们能够鉴定出最可能危害水体的影响因素。本研究评估了化学制品、营养物质和悬浮沉积物3类污染物。这种证据权重的方法表明格林威治湾主要受到富营养化相关的影响因素危害。格林威治湾的沉积物富含碳,低溶解氧浓度的情况十分常见,尤其在格林威治湾西部。底栖生物群落出现发育不良的情况,与在氧气不足情况下的预测结果吻合。尽管我们的分析表明环境中的污染物浓度可能导致有害结果的出现,我们并未在结果中检出毒性。这是由于沉积物中存在大量的有机物,这些有机物限制了污染物的生物可利用性。我们的分析还表明悬浮沉积物的影响对于湾区的大部分区域而言几乎不存在。本分析展示了诊断法步骤可以用于组织和评估影响格林威治湾生态健康的潜在影响因素。诊断法步骤对于管理受到多重因素影响的水体非常有用。
精选自Marguerite Pelletier, Kay Ho, Mark Cantwell, Monique Perron, Kenneth Rocha, Robert M. Burgess, Roxanne Johnson, Kenneth Perez, John Cardin, Michael A. Charpentier. Diagnosis of potential stressors adversely affecting benthic invertebrate communities in Greenwich Bay, Rhode Island, USA. Environmental Toxicology and Chemistry: Volume 36, Issue 2, pages 449–462, July 2017. DOI: 10.1002/etc.3562
详情请见http://onlinelibrary.wiley.com/wol1/doi/10.1002/etc.3562/full
  相似文献   
294.
The aim of this study was to measure the air concentrations of carbon dioxide (CO2) and formaldehyde (HCHO) in daycare centers to determine relevant influencing factors, including temperature, relative humidity (RH), type of facility, number of children, type of ventilation system, ventilation time, and air cleaning system. The authors measured HCHO, CO2, temperature, and RH in the center of classrooms in 289 daycare centers. Spearman’s correlation and Mann–Whitney analyses were used to examine the relationships and differences in HCHO and CO2 for varying temperatures, RH values, and categorical indoor environmental factors. There were no significant differences in the HCHO and CO2 air concentrations with varying numbers of children, ventilation times, or ventilation and air cleaning system types. However, both the HCHO and CO2 air concentrations were significantly different for varying RH values, which were divided into five categories (p < 0.001). Only the HCHO air concentrations were significantly different for varying temperatures, which were divided into five categories (p < 0.001). Significant correlations were found between HCHO air concentrations and the temperature (r = 0.35, p < 0.0001), RH (r = 0.51, p < 0.0001), and CO2 (r = 0.36, p < 0.0001). The study results support maintaining an appropriate temperature and RH range for reducing airborne HCHO in daycare centers. Further research is needed to elucidate the precise mechanisms responsible for the relationships observed in this study.

Implications: Data from 289 daycare centers in Seoul, South Korea, indicate that HCHO concentrations show a positive correlation with indoor temperature and relative humidity. This indicates that keeping temperatures low will help keep HCHO concentrations low, by both a direct and an indirect effect, since low temperatures also cause low relative humidity.  相似文献   

295.
Reuse of structural steel could be an environmentally superior alternative to the current practice, which is to recycle the majority (88%) of scrap steel. In spite of the potential benefits, and in a time when “sustainability” and “climate change” are critical societal issues, the question arises: why are greater rates of structural steel reuse not being observed? One of the major factors in the rate of structural steel reuse is how decision-makers understand the life cycle implications of their choice to recycle steel rather than reuse it. This paper contributes towards our understanding of these implications, particularly the cost implications, of reuse as an alternative to recycling by presenting a streamlined life cycle analysis and identifying the major contributors to each process. The results of a case study indicate that a significant reduction in some life cycle impact metrics (greenhouse gas emissions, water use) can result from reusing structural steel rather than recycling it. The largest contributors to the life cycle impact of recycling were the shredding, melting, and forming sub-processes. The largest contributor to reuse was the deconstruction sub-process. A total life cycle cost analysis is performed to understand the cost of damages to the environment and human health in combination with the cost of construction activities. Sensitivity and uncertainty analyses are also conducted to quantify variability in the results and determine economic conditions where the two processes have an equal cost.  相似文献   
296.
A comprehensive assessment of indoor carbonyl compounds for the academic staff, workers, and students was conducted on a university campus in Xiamen, China. A total of 15 representative environment categories, including 12 indoor workplaces and three residential units, were selected. The potential indoor pollution sources were identified based on the variability in the molar compositions and correlation analyses for the target carbonyls. Furnishing materials, cooking emissions, and electronic equipment, such as photocopiers, can generate various carbonyls in the workplace. Comparison studies were conducted in the clerical offices, demonstrating that off-gases from wooden furniture and lacquer coatings, environmental tobacco smoke (ETS), and the use of cleaning reagents elevated the indoor carbonyl levels. The measured concentrations of formaldehyde and acetaldehyde in most locations surpassed the exposure limit levels. The lifetime cancer hazard risk (R) associated with formaldehyde was above the concern risk level (1 × 10?6) in all of the workplaces. The results indicate that formaldehyde exposure is a valid occupational health and safety concern. Wooden furniture and refurbishing materials can pose serious health threats to occupants. The information in this study could act as a basis for future indoor air quality monitoring in Mainland China.
Implications:A university campus represents a microscale city environment consisting of all the working, living, and commercial needs of staff and students. The scope of this investigation covers 21 hazardous carbonyl species based on samples collected from 15 categories of workplaces and residential building in a university campus in southern China. Findings of the study provide a comprehensive assessment of indoor air quality with regards to workers’ health and safety. No similar study has been carried out in China.  相似文献   
297.
ABSTRACT

The introduction of reformulated gasolines significantly reduced exhaust hydrocarbon (HC) mass emissions, but few data are available concerning how these new fuels affect exhaust reactivity. Similarly, while it is well established that high-emitting vehicles contribute a significant portion of total mobile source HC mass emissions, it is also important to evaluate the exhaust reactivity from these vehicles. The objective of this study was to evaluate the relative influence on in-use vehicle exhaust reactivity of three critical factors: fuel, driving cycle, and vehicle emission status. Nineteen in-use vehicles were tested with seven randomly assigned fuel types and two driving cycles: the Federal Test Procedure (FTP) and the Unified Cycle (UC). Total exhaust reactivity was not statistically different between the FTP and UC cycles but was significantly affected by fuel type. On average, the exhaust reactivity for California Phase 2 fuel was the lowest (16 % below the highest fuel type) among the seven fuels tested for cold start emissions. The average exhaust reactivity for high-emitting vehicles was significantly higher for hot stabilized (11%) and hot start (15%) emissions than for low-emitting vehicles. The exhaust reactivities for the FTP and UC cycles for light-end HCs and carbonyls were significantly different for the hot stabilized mode. There was a significant fuel effect on the mean specific reactivity (SR) for the mid-range HCs, but not for light-end HCs or carbonyls, while vehicle emission status affected the mean SR for all three HC compound classes.  相似文献   
298.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   
299.
This study quantified Cd, Pb, and Cu content, and the soil–plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz–clay matrix of rice paddy soils at 20–30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146?±?0.004, 23.3?±?0.1, and 23.5?±?0.1 mg/kg which exceeded calculated background concentrations of 0.006?±?0.004, 1.9?±?0.5, and 2.4?±?1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2?±?0.1 to 140?±?3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60 % with respect to a control sample was found for model plants, whereas a decrease of only 10 % was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84?±?0.02 and 7.7?±?0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0.09?±?0.01 and 0.10?±?0.04 mg/kg respectively in the rice grain endosperm. The adaptation of native rice plants, combined with bioaccumulation ratios of 1?±?0.6 to 1.4?±?0.7 calculated for Cd transfer to the rice grain endosperm, and maximum Cd transfer factors of 4.3?±?2.1 to the plant roots, strongly suggest a continuous input of some toxic metals from coal-mining operations to agricultural lands in the region of Cam Pha. In addition, our results imply a sustained absorption of metals by native rice plant varieties, which may lead to metal accumulation (e.g., Cd) in human organs and in turn to severe disease.  相似文献   
300.
Jiang S  Ho CT  Lee JH  Duong HV  Han S  Hur HG 《Chemosphere》2012,87(6):621-624
Shewanella putrefaciens 200, resistant to high concentration of Hg(II), was selected for co-removal of mercury and selenium from aqueous medium. Biogenic Hg(0) reduced from Hg(II) by S. putrefaciens 200 was captured into extracellular amorphous selenium nanospheres, resulting in the formation of stable HgSe nanoparticles. This bacterial reduction could be a new strategy for mercury removal from aquatic environments without secondary pollution of mercury methylation or Hg(0) volatilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号