首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   7篇
  国内免费   21篇
安全科学   16篇
废物处理   30篇
环保管理   30篇
综合类   86篇
基础理论   49篇
污染及防治   113篇
评价与监测   24篇
社会与环境   10篇
灾害及防治   3篇
  2023年   7篇
  2022年   11篇
  2021年   10篇
  2020年   6篇
  2019年   10篇
  2018年   11篇
  2017年   15篇
  2016年   13篇
  2015年   14篇
  2014年   14篇
  2013年   24篇
  2012年   20篇
  2011年   24篇
  2010年   15篇
  2009年   19篇
  2008年   24篇
  2007年   16篇
  2006年   19篇
  2005年   13篇
  2004年   8篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
  1964年   1篇
  1961年   1篇
  1958年   2篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
Environmental Science and Pollution Research - Willows, woody plants of genus Salix common in floodplains of temperate regions, act as plant pumps and translocate the Cd and Zn in the soil profiles...  相似文献   
85.
86.
Fang GC  Wu YS  Chang CN  Ho TT 《Chemosphere》2006,64(7):1233-1242
Fine (PM(2.5)) and Coarse (PM(2.5-10)) particulates concentrations of ambient air particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously from February 2004 to January 2005 at the Taichung Harbor (TH) sampling site near Taiwan of central Taiwan. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample used soxhlet analytical method extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24h, and then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The results indicated that vehicle emissions, coal combustion, incomplete combustion and pyrolysis of fuel and oil burning were the main source of PAHs near Taiwan Strait of central Taiwan. Diagnostic ratio and principal component analysis (PCA) were also used to characterize and identify PAHs emission source in this study.  相似文献   
87.
88.
89.
Three high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films from Chronopol (Ch-I) and Cargill Dow Polymers (GII and Ca-I) were analyzed for their degradation under various temperature and relative humidity (RH) conditions. Two sets of plastic films, each containing 11 samples, were randomly hung in a temperature/humidity-controlled chamber by means of plastic-coated paper clips. The tested conditions were 28, 40, and 55°C at 50 and 100% RH, respectively, and 55°C at 10% RH. The three tested PLA films started to lose their tensile properties when their weight-average molecular weight (M w) was in the range of 50,000 to 75,000 g mol–1. The average degradation rate of Ch-I, GII, and Ca-I was 28,931, 27,361, and 63,025 M w/week, respectively. Hence, GII had a faster degradation rate than Ch-I and Ca-I under all tested conditions. The degradation rate of PLA plastics was enhanced by the increase in temperature and relative humidity. This trend was observed in all three PLA plastics (Ca-I, GII, and Ch-I). Of the three tested films, Ch-I was the first to lose its mechanical properties, whereas Ca-I demonstrated the slowest loss, with mechanical properties under all tested conditions.  相似文献   
90.
Studies have been made of the growth characteristics of water hyacinth, Eichhornia crassipes (Mart.) Solms, and its ability to remove N, P and K, in a secondary settling pond of a small secondary sewage treatment plant serving both the academic and residential blocks of the Swire Marine Laboratory, University of Hong Kong. The treatment plant consists of, in series, a primary settling tank, a trickling filter compartment and a secondary settling pond from which part of the treated wastewater is recycled to the primary settling tank while the remaining effluent (1 to 2 m3 daily) mixes with and hence is diluted by the outflowing seawater from the aquarium system of the Swire Marine Laboratory before discharge to the sea. Samples of wastewater have been taken regularly from the primary sedimentation pond, the outflow of the trickling filter, the secondary settling pond and the effluent of the treatment plant (before mixing with aquarium outflow) since January, 1992. Physical, chemical and biological characteristics of the samples have been determined and are typical of secondary effluents, with a mean pH of about 7.5, total solids 1200 mg L−1, suspended solids 45 mg L−1, conductivity 2000 μS cm−1, salinity 1 ppt, dissolved oxygen 2 mg L−1, BOD5 45 mg L−1, Kjeldahl-N 30 mg L−1, NH4,-N 25 mg L−1, NO3-N 4 mg L−1, total P 10 mg L−1, K 35 mg L−1 and total coliforms of less than 105 colonies 100 ml−1.Water hyacinth plants have been stocked in the secondary settling pond as an integral part of the treatment plant so as to improve the quality of, as well as to retrieving and recycling nutrient elements from, the wastewater. The plants are periodically harvested to maintain an active growing crop. The growth rate, standing crop biomass, tissue nutrient composition, nutrient storage and accumulation rate of two growth cycles, one from February 25 to March 18 (mean temperature 17.6°C) and the other from 22 April to 12 May (24.8°C) are reported. The water hyacinth assumed a relatively high standing crop biomass of 10 kg m−2 (5 to 6 t DM ha−1), and growth rates of 48 and 225 g m−2 day−1, respectively, for the first and second growth period. Nutrient storage capacities were relatively high, at about 20, 7.5 and 16.5 g m−2 for N, P and K, respectively. The nutrient composition was very high, reaching 5.42% for N, 1.97 for P, and 4.57 for K. Both the stem and lamina accumulated high levels of N, while the petiole had the highest level of P and K. Apart from nutrient removal, the water hyacinth also helped to decrease the suspended solids, BOD5 value and total coliforms of the wastewater.It is concluded that water hyacinth improves the quality of wastewater in such small-scale sewage treatment plants and it is recommended that frequent harvests of water hyacinth would increase the treatment efficiency, especially during the active growing season with high temperatures coupled with intense solar radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号