首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   6篇
  国内免费   2篇
安全科学   4篇
废物处理   13篇
环保管理   15篇
综合类   196篇
基础理论   55篇
污染及防治   47篇
评价与监测   10篇
社会与环境   14篇
  2022年   5篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   8篇
  2016年   4篇
  2015年   7篇
  2013年   9篇
  2012年   4篇
  2011年   13篇
  2010年   12篇
  2009年   11篇
  2008年   11篇
  2007年   10篇
  2006年   7篇
  2005年   10篇
  2004年   5篇
  2003年   9篇
  2002年   11篇
  2000年   9篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1985年   3篇
  1983年   3篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1974年   3篇
  1972年   4篇
  1970年   4篇
  1969年   3篇
  1967年   4篇
  1966年   4篇
  1965年   7篇
  1964年   8篇
  1963年   9篇
  1962年   8篇
  1961年   5篇
  1960年   7篇
  1959年   4篇
  1958年   8篇
  1957年   10篇
  1956年   8篇
  1954年   5篇
  1953年   5篇
排序方式: 共有354条查询结果,搜索用时 31 毫秒
271.
272.
273.
Smoldering combustion, commercially available as the Self‐sustaining Treatment for Active Remediation (STAR) technology, is an innovative technique that has shown promise for the remediation of contaminant source zones. Smoldering combustion is an exothermic reaction (net energy producing) converting carbon compounds and an oxidant (e.g., oxygen in air) to carbon dioxide, water, and energy. Thus, following ignition, the smoldering combustion reaction can continue in a self‐sustaining manner (i.e., no external energy or added fuel input following ignition) as the heat generated by the reacting contaminants is used to preheat and initiate combustion of contaminants in adjacent areas, propagating a combustion front through the contaminated zone provided a sufficient flux of air is supplied. The STAR technology has applicability across a wide‐range of hydrocarbons in a variety of hydrogeologic settings; however, there are limitations to its use. Impacted soils must be permeable enough to allow a sufficient flux of air to the combustion front and there exists a minimum required concentration of contaminants such that the soils contain sufficient fuel for the reaction to proceed in a self‐sustaining manner. Further limitations, as well as lessons learned and methods to mitigate these limitations, are presented through a series of case studies. In summary, the successful implementation of STAR will result in >99 percent reduction in contaminant concentrations in treated areas, limited residual contaminant mass, reduced groundwater contaminant mass flux which can be addressed through monitored natural attenuation; and an enhanced site exit strategy, reduced lifecycle costs, and reduced risk. ©2016 Wiley Periodicals, Inc.  相似文献   
274.
Fluorochemicals (FCs) are oxidatively recalcitrant, environmentally persistent, and resistant to most conventional treatment technologies. FCs have unique physiochemical properties derived from fluorine which is the most electronegative element. Perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) have been detected globally in the hydrosphere, atmosphere and biosphere. Reducing treatment technologies such as reverses osmosis, nano-filtration and activated carbon can remove FCs from water. However, incineration of the concentrated waste is required for complete FC destruction. Recently, a number of alternative technologies for FC decomposition have been reported. The FC degradation technologies span a wide range of chemical processes including direct photolysis, photocatalytic oxidation, photochemical oxidation, photochemical reduction, thermally-induced reduction, and sonochemical pyrolysis. This paper reviews these FC degradation technologies in terms of kinetics, mechanism, energetic cost, and applicability. The optimal PFOS/PFOA treatment method is strongly dependent upon the FC concentration, background organic and metal concentration, and available degradation time.  相似文献   
275.
The estimation of nutrient fluxes, the determination of spatial and temporal response and the understanding of biogeochemical changes in the past, present and future in the Axios River catchment, in Greece, as well as the impacts to the coastal zone of Thermaikos Gulf were accomplished by the use of harmonized watershed and coastal zone models. The mathematical model MONERIS was the watershed management model that was used to model the export loads of nutrients in Axios River. MONERIS was developed to estimate the nutrient inputs into river basins by point sources and various diffuse pathways. Watershed hydrologic and water quality data were collected and synthesized to develop input data sets for the simulation of Axios River catchment. The model was modified to better assess organic nitrogen export loads in Mediterranean watersheds. The results showed the importance of agricultural and livestock activities, concerning their nutrients emissions in the River. MONERIS was integrated with the coastal zone model WASP 6.0 to assess the impacts of the nutrient loads to the eutrophication status of the coastal zone. Several management scenarios were assessed. Management scenarios included measures for reduction in the emissions from the fertilizer plant of Veles, removal of phosphorous from the detergents in FYROM, treatment of urban wastes to EU Standards, reduction in N-fertilizer input, reduction in erosion and the green scenario that represented the maximum reduction scenario of all the measures together. The model simulations indicated that the coastal zone of Axios mouth will be eutrophic for nitrate (2.69–3.34 μM) and phosphate (0.2–0.68 μM) and upper mesotrophic for chlorophyll-a (0.74–1.45 μg/l) for the scenarios tested. The results suggest that the impact of the management scenarios will be largely negligible (no change in trophic status) for the Thermaikos Gulf sector nearby the Axios River due to additional sources such as the loads from Thessaloniki's waste water treatment plant which appear to affect the region to a greater extent. The integration of watershed and coastal zone models can be used to assess management scenarios in order to illustrate the significance of various land use practices to the eutrophication of the Gulf.  相似文献   
276.
277.
Fluorochemicals (FCs) are oxidatively recalcitrant, environmentally persistent, and resistant to most conventional treatment technologies. FCs have unique physiochemical properties derived from fluorine which is the most electronegative element. Perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) have been detected globally in the hydrosphere, atmosphere and biosphere. Reducing treatment technologies such as reverses osmosis, nano-filtration and activated carbon can remove FCs from water. However, incineration of the concentrated waste is required for complete FC destruction. Recently, a number of alternative technologies for FC decomposition have been reported. The FC degradation technologies span a wide range of chemical processes including direct photolysis, photocatalytic oxidation, photochemical oxidation, photochemical reduction, thermally-induced reduction, and sonochemical pyrolysis. This paper reviews these FC degradation technologies in terms of kinetics, mechanism, energetic cost, and applicability. The optimal PFOS/PFOA treatment method is strongly dependent upon the FC concentration, background organic and metal concentration, and available degradation time.  相似文献   
278.
Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water.  相似文献   
279.
During 1994–1995 and 1997–1998 spiders were sampled with pitfall traps in a botanically rich, mesophytic, calcareous dune grassland in Belgium. As a consequence of intensive cattle grazing, vegetation variation in a large part of the area had diminished. The study area was also patchily grazed by rabbits. Community analysis with TWINSPAN revealed five distinct spider communities. Ecological differentiation was best explained by combination of the habitat variables: distance from grazed or non-grazed vegetation,Rosa pimpinellifolia cover and grass cover in both summer and winter. Species diversity was highest in the border zone between the cattle-grazed and non cattle-grazed sites. Correlation of the most abundant spider species with the vegetation determinants explains the ecological differentiation between the spider communities. Species were classified into seven major groups that reflect the species’ habitat preferences. The group showing clear association with non cattle-grazed, tall vegetation consists of common species. Characteristic species for the intensively cattle-grazed sites are common aeronauts and rare species such asWalckenaeria stylifrons, Mastigusa arietina, Ceratinopsis romana andPardosa monticola. The latter are shown to be dependent on ungrazed vegetation for juvenile development and overwintering. Intensive grazing results in homogeneous short vegetation, which can only be colonized by ‘open ground’ species with a well-developed dispersal capacity, or by species which are not dependent on litter-rich situations for juvenile development. An extensive cattle grazing regime results in a patchy mosaic grassland where, in addition to the above mentioned groups of species, other species survive by migrating between the buffered litter rich ungrazed vegetation and the short vegetation. Additionally, some typical and rare species prefer the transition zone between the grazed and the ungrazed vegetation because they are associated with specific habitat structures or inhabiting ant-species.  相似文献   
280.
During 1994–1995 and 1997–1998 spiders were sampled with pitfall traps in a botanically rich, mesophytic, calcareous dune grassland in Belgium. As a consequence of intensive cattle grazing, vegetation variation in a large part of the area had diminished. The study area was also patchily grazed by rabbits. Community analysis with TWINSPAN revealed five distinct spider communities. Ecological differentiation was best explained by combination of the habitat variables: distance from grazed or non-grazed vegetation,Rosa pimpinellifolia cover and grass cover in both summer and winter. Species diversity was highest in the border zone between the cattle-grazed and non cattle-grazed sites. Correlation of the most abundant spider species with the vegetation determinants explains the ecological differentiation between the spider communities. Species were classified into seven major groups that reflect the species’ habitat preferences. The group showing clear association with non cattle-grazed, tall vegetation consists of common species. Characteristic species for the intensively cattle-grazed sites are common aeronauts and rare species such asWalckenaeria stylifrons, Mastigusa arietina, Ceratinopsis romana andPardosa monticola. The latter are shown to be dependent on ungrazed vegetation for juvenile development and overwintering. Intensive grazing results in homogeneous short vegetation, which can only be colonized by ‘open ground’ species with a well-developed dispersal capacity, or by species which are not dependent on litter-rich situations for juvenile development. An extensive cattle grazing regime results in a patchy mosaic grassland where, in addition to the above mentioned groups of species, other species survive by migrating between the buffered litter rich ungrazed vegetation and the short vegetation. Additionally, some typical and rare species prefer the transition zone between the grazed and the ungrazed vegetation because they are associated with specific habitat structures or inhabiting ant-species. Nomenclature: Roberts (1987, 1995) forAraneae; van der Meijden et al. (1990) for vascular plants; Corly et al. (1981) for bryophytes; Schaminée et al. (1996) for vegetation associations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号