首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   0篇
  国内免费   11篇
安全科学   7篇
废物处理   26篇
环保管理   15篇
综合类   17篇
基础理论   47篇
污染及防治   89篇
评价与监测   7篇
社会与环境   5篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2019年   4篇
  2018年   11篇
  2017年   5篇
  2016年   4篇
  2015年   12篇
  2014年   12篇
  2013年   21篇
  2012年   5篇
  2011年   17篇
  2010年   8篇
  2009年   13篇
  2008年   18篇
  2007年   13篇
  2006年   12篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1982年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
81.
Although the flow dynamics of pure liquid drops in other liquids has been well researched, little attention has been paid to the impacts of impurities. Hence, most of research is not directly applicable to the real world. To address this gap, we conducted numerical experiments simulating the rise of pure and contaminated drops. It was selected to study liquid CO2 drops contaminated with SO2 under high pressure because such mixtures mimic potential scenarios in which drops may leak from carbon capture and storage (CCS) facilities or pipelines. First, numerical simulation experiments were performed to validate our method by comparing our results with previous research on pure drops. Second, the validated numerical approach was applied to simulations of contaminated drops to investigate how contaminants affect rising drops. The results show that the SO2 contamination caused changes in deformation, breakup phenomena, rising velocities, surrounding flow fields and drag coefficients. Most importantly, the contamination resulted in the formation of smaller “child drops”; such breakup is not observed in pure CO2 drops. The formation of child drops in turn affects the streamlines, patterns and areas of wakes behind the contaminated drops. The addition of contaminants also enhances the dissolution rate, which is affected by the contaminant concentration and by the flow dynamics of the rising drop. Our results would improve understanding the rise of impure CO2 drops, such as drops potentially leaked by future CCS operations.  相似文献   
82.
The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a “no action” situation (with no remedial measures) and for selected countermeasures. The exercise provided an opportunity for comparison of three modelling approaches, as well as a comparison of the predicted effectiveness of various countermeasures in terms of their short-term and long-term effects on predicted doses to humans.  相似文献   
83.
Determination of the chemical compositions of atmospheric single particles in the Yellow Sea region is critical for evaluating the environmental impact caused by air pollutants emitted from mainland China and the Korean peninsula. After ambient aerosol particles were collected by the Dekati PM10 cascade impactor on July 17–23, 2007 at Tokchok Island (approximately 50 km west of the Korean coast nearby Seoul), Korea, overall 2000 particles (on stage 2 and 3 with cut-off diameters of 2.5–10 μm and 1.0–2.5 μm, respectively) in 10 samples were determined by using low-Z particle electron probe X-ray microanalysis. X-ray spectral and secondary electron image (SEI) data showed that soil-derived and sea-salt particles which had reacted or were mixed with SO2 and NOx (or their acidic products) outnumbered the primary and “genuine” ones (59.2% vs. 19.2% in the stage 2 fraction and 41.3% vs. 9.9% in the stage 3 fraction). Moreover, particles containing nitrate in the secondary soil-derived species greatly outnumbered those containing sulfate. Organic particles, mainly consisting of marine biogenic species, were more abundant in the stage 2 fraction than in the stage 3 fraction (11.6% vs. 5.1%). Their relative abundance was greater than the sum of carbon-rich, K-containing, Fe-containing, and fly ash particles, which exhibited low frequencies in all the samples. In addition, many droplets rich in C, N, O, and S were observed. They tended to be small, exhibiting a dark round shape on SEI, and generally included 8–20 at.% C, 0–12 at.% N, 60–80 at.% O, and 4–10 at.% S (sometimes with <3 at.% Mg and Na). They were attributed to be a mixture of carbonaceous matter, H2SO4, and NH4HSO4/(NH4)2SO4, mostly from the reaction of atmospheric SO2 with NH3 under high relative humidity. The analysis of the relationship between the aerosol particle compositions and 72-h backward air-mass trajectories suggests that ambient aerosols at Tokchok Island are strongly affected not only by seawater from the Yellow Sea but also by anthropogenic pollutants emitted from China and the Seoul–Incheon metropolis, resulting in the dominance of complex secondary aerosol particles.  相似文献   
84.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   
85.
86.
The influence of nutrient deprivation on cell-cycle progression was examined in two phytoplankton species, the diatom Thalassiosira weissflogii (actin) and the coccolithophorid Hymenomonas carterae (cocco II). The diatom was starved for nitrogen, silicon or both, whereas only nitrogen limitation was examined in H. carterae. In both species, nitrogen-starved cells were arrested in the early part of the cell cycle (G1 phase). In the diatom, silicon-starvation arrested cells in late G1 phase and also in the last part of the cell cycle (G2+M). In all cases, cell-cycle arrest could be reversed by addition of fresh medium, but cell-cycling times during the first generation were increased in comparison to those in nutrient replete, steady-state growth conditions. These results supply evidence for simultaneous dual-nutrient limitation of population growth and provide a mechanistic interpretation for the division patterns observed in cultures where nutrients are supplied periodically.  相似文献   
87.
The effects of arsenic (As2O3) on plasma osmolarity, Na and K concentrations, the activity of gill Na–K-ATPase, and on the ultrastructure of gill chloride cells were compared between seawater tilapia (Oreochromis mossambicus) and freshwater tilapia in the Institute of Zoology, Academia Sinica, between 1989 and 1991. Arsenic was found to be more lethal in seawater tilapia [96 h LC50 (median lethal concentration): 26.5 ppm] than in freshwater ones (71.7 ppm). No significant effect was found on plasma ion concentrations and osmolarity, enzyme activity or the ultrastructure of chloride cells in freshwater tilapia after 96 h exposure to 70 ppm arsenic. In contrast, 96 h exposure to 15 ppm arsenic caused evident effects in seawater tilapia: an increase in plasma osmolarity and activity of gill Na–K-ATPase, as well as better development of the chloride cell tubular system. These data suggest that the lethal effect of arsenic may be partially attributed to a hydromineral disturbance in seawater tilapia, but in freshwater tilapia arsenic perhaps causes destruction in some physiological mechanisms other than osmoregulation. The activation of gill Na–K-ATPase and chloride cells in seawater tilapia appears to indicate an adaptation in the osmoregulatory mechanism to arsenic exposure, i.e., to enhance secreting ions or arsenic in the gills.  相似文献   
88.
The saline water intruded zone in paddy fields near the seashore can be diagnosed accurately by joint exploration with geophysical and geochemical methods. Using the electromagnetic (EM) sounding technique, the weakly consolidated zone which introduces saline water into such an area of near seashore paddy fields in Korea was detected from the variation of electrical conductivity distribution following field irrigation. Vertical electrical sounding (VES) with Schlumberger array and chemical analysis of top soils, and groundwater in the study area verified the intruded zone near the surface. The VES results showed that the intrusion of seawater occurred in the form of a channel down to 30 m below sea level. Geochemical analysis of the top soil samples for the six major elements found in seawater indicated that the region showing high concentrations is concordant with the weakly consolidated zone near the surface. The degree of contamination in the study area was investigated by comparing the soil data with those from a nearby old reclamation field. If remediation work is not done for this intrusion zone, the sodicity degree in the paddy soil is expected to increase compared with the reference site data.  相似文献   
89.
Kim KH  Kim MY  Hong SM  Youn YH  Hwang SJ 《Chemosphere》2005,59(7):929-937
The concentrations of three different size fractions of particulate matter (PM) including PM2.5, PM10, and TSP were determined continuously at hourly intervals from four different sites in Seoul, Korea during the spring of 2001. To learn the effects of wind speed change on PM fractionation, the entire data sets were initially sorted into three particle fractions such as: fine (F: PM2.5), coarse (C: PM10-PM2.5), and giant (G: TSP-PM10). The inter-fraction relationships of PM were then explored by linear regression analysis of the data divided into four wind speed regimes. The results of this analysis, when examined in terms of either relative dominance between different PM fractions (i.e., in terms of their slope values) or strength of correlations, indicate the existence of diverse inter-fraction patterns. Most importantly, the physical influence of wind speed is seen to be reflected most efficiently between fine and coarse particle fractions, as the relative contribution of coarse fraction to the mass concentration of total particles (e.g., PM10) changes proportionally with changes in wind speed. However, such systematic patterns decrease noticeably between fine and giant fractions, as they can be affected more sensitively by such factors as the nature of their sources or the surrounding environmental conditions. The results of our comparative analysis thus confirm that wind speed is a useful barometer to distinguish and predict the behavior of different particle fractions in relation to each other.  相似文献   
90.
Emission of heavy metals from animal carcass incinerators in Taiwan   总被引:1,自引:0,他引:1  
Chen SJ  Hung MC  Huang KL  Hwang WI 《Chemosphere》2004,55(9):1197-1205
The metal emissions from three incinerators burning different feedstock in Taiwan were characterized in this study. It was found that the Incinerators A and B, treating pig carcasses and animal (including pigs) carcasses, respectively, had much higher metal concentrations in stack flue gases than Incinerator C that combusted medical wastes. However, Incinerator A obtained relative lower metal contents in fly ash and bottom ash than the other two incinerators, mainly because the former used a much lower feedstock rate (although burning at a lower temperature) than the latter. For all the incinerators, (1) Fe, Ni, Pb, and Zn were dominant in both the fly ash and bottom ash while most of the Cd and Pb (more volatile) were present in the fly ash; (2) Fe emission factor was the highest and Zn/Pb/Ni/Cr emission factors were greater than those of Mn/Cd/Cu; (3) the Cu emission factors in bottom ash were relatively higher in comparison with those in fly ash; and (4) indicatory metals were the same (Fe, Zn, Pb, and Cu). The metal emission factors obtained from the livestock incinerators were much higher than those reported from MSW incinerators. Likewise, crematories that burn human cadavers must create similar pollution issues since metal supplements are part of human's normal diets. This causes an environmental concern and this work has important ramifications both in technical and regulatory decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号