Environmental Science and Pollution Research - Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications.... 相似文献
Environmental Science and Pollution Research - In the process of coal gangue surface accumulation and underground filling disposal, the heavy metals contained in coal gangue will inevitably... 相似文献
Environmental Science and Pollution Research - In this study, a composite aerogel (WP-MMT) composed of wastepaper (WP) and montmorillonite (MMT) was prepared by ambient pressure drying technology... 相似文献
This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m3/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10(-13)kg/Nm3 and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries. 相似文献
Papillary thyroid cancer (PTC) has inflicted huge threats to the health of mankind. Metal pollution could be a potential risk factor of PTC occurrence, but existing relevant epidemiological researches are limited. The current case-control study was designed to evaluate the relationships between exposure to multiple metals and the risk of PTC. A total of 262 histologically confirmed PTC cases were recruited. Age- and gender-matched controls were enrolled at the same time. Urine samples were used as biomarkers to reflect the levels of environmental exposure to 13 metals. Conditional logistic regression models were adopted to assess the potential association. Single-metal and multi-metal models were separately conducted to evaluate the impacts of single and co-exposure to 13 metals. The increased concentration of urinary Cd, Cu, Fe, and Pb quartiles was found significant correlated with PTC risk. We also found the decreased trends of urinary Se, Zn, and Mn quartiles with the ORs for PTC. These dose-response associations between Pb and PTC were observed in the single-metal model and remained significant in the multi-metal model (OR25-50th=1.39, OR50-75th=3.32, OR>75th=7.62, p for trend <0.001). Our study suggested that PTC was positively associated with urinary levels of Cd, Cu, Fe, Pb, and inversely associated with Se, Zn, and Mn. Targeted public health policies should be made to improve the environment and the recognition of potential risk factors. These findings need additional studies to confirm in other population.
Phthalates (PAEs) in drinking water sources such as the Yangtze River in developing countries had aroused widespread concern. Here, the water, suspended particulate matter (SPM), and sediment samples were collected from 15 sites in wet and dry seasons in Zhenjiang, for the determination of six PAEs (DMP, DEP, DIBP, DBP, DEHP, and DOP) using the solid-phase extraction (SPE) or ultrasonic extraction coupled with gas chromatography-mass spectrometry (GC-MS). The total concentrations of six PAEs (Σ6PAEs) spanned a range of 2.65–39.31 μg L?1 in water, 1.97–34.10 μg g?1 in SPM, and 0.93–34.70 μg g?1 in sediment. The partition coefficients (Kd1) of PAEs in water and SPM phase ranged from 0.004 to 3.36 L g?1 in the wet season and from 0.12 to 2.84 L g?1 in the dry season. Kd2 of PAEs in water and sediment phase was 0.001–9.75 L g?1 in the wet season and 0.006–8.05 L g?1 in the dry season. The dominant PAEs were DIBP, DBP, and DEHP in water and SPM, DIBP, DEHP, and DOP in sediment. The concentration of DBP in water exceeded the China Surface Water Standard. The discharge of domestic sewage and industrial wastewater might be the main potential sources of PAEs. The risk quotient (RQ) method used for the risk assessment revealed that DBP (0.01 < RQ < 1) posed a medium risk, while DIBP and DEHP (RQ > 1) posed a high environmental risk in water, DIBP (RQ > 1) also showed a high risk in sediment.