首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   0篇
安全科学   7篇
废物处理   4篇
环保管理   35篇
综合类   37篇
基础理论   25篇
污染及防治   25篇
评价与监测   5篇
社会与环境   5篇
灾害及防治   1篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   15篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   10篇
  2005年   7篇
  2004年   2篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1971年   2篇
  1966年   1篇
  1962年   1篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
111.
ABSTRACT: The relation offish community composition to riparian cover at two spatial scales was compared at 18 streams in the agricultural Minnesota River Basin. The two spatial scales were: (1) local riparian zone (a 200 meter wide buffer extending 2 to 3 kilometers upstream of the sampling reach); and (2) the upstream riparian zone (a 200 m wide buffer on the mainstem and all perennial tributaries upstream of the sampling reach). Analysis of variance indicated that streams with wooded‐local riparian zones had greater fish species richness (means = 20 and 15, respectively) and Index of Biotic Integrity (IBI) scores (means = 40 and 26, respectively) than streams with open‐local riparian zones. Streams with wooded‐upstream riparian zones tended (were not statistically significant) to have greater numbers of species (means = 19 and 15, respectively) and IBI scores (means = 33 and 28, respectively) than streams with open‐upstream riparian zones. There was no significant interaction between the riparian zone conditions at the two scales. This study suggests that maintenance of wooded riparian cover along streams could be effective in maintaining or improving fish community composition in streams draining heavily agricultural areas.  相似文献   
112.

Introduction

The effect of oceanic CO2 sequestration was examined exposing a deep-sea bacterium identified as Vibrio alginolyticus (9NA) to elevated levels of carbon dioxide and monitoring its growth at 2,750 psi (1,846 m depth).

Findings

The wild-type strain of 9NA could not grow in acidified marine broth below a pH of 5. The pH of marine broth did not drop below this level until at least 20.8 mM of CO2 was injected into the medium. 9NA did not grow at this CO2 concentration or higher concentrations (31.2 and 41.6 mM) for at least 72 h. Carbon dioxide at 10.4 mM also inhibited growth, but the bacterium was able to recover and grow. Exposure to CO2 caused the cell to undergo a morphological change and form a dimple-like structure. The membrane was also damaged but with no protein leakage.  相似文献   
113.
The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NOx). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s?1 m?2 of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.  相似文献   
114.
Abstract: The Watershed Analysis Risk Management Framework watershed model was enhanced to simulate the transport and fate of mercury and to calculate the fish mercury concentrations (FMC) attained by fish through the food web. The model was applied to Western Lake Superior Basin of Minnesota, which has many peat lands and lakes. Topographic, land use, and soil data were used to set up the model. Meteorology and precipitation chemistry data from nearby monitoring stations were compiled to drive the model. Simulated flow and mercury concentrations for several stream stations were comparable to available data. The model was used to perform mercury total maximum daily load calculations for two contrasting drainage lakes (Wild Rice Lake and Whiteface Reservoir). The model results for wet deposition, dry deposition, evasion, watershed yield, and soil sequestration of mercury were comparable with available actual data. The model predicted lake ice cover from November to April and weak stratification in summer, typical of shallow lakes in cold regions. The simulated sulfate decrease and methylmercury increase near the lake bottom in late summer are caused by sulfate reduction and mercury methylation that occur in the surficial sediment. Simulated FMC were within the range of observed values and the R2 of correlation between the simulated and observed FMC was 0.77. Under the 1989‐2004 base condition, the average simulated FMC of four‐year‐old walleye was 0.31 μg/g for Whiteface Reservoir and 0.15 μg/g for Wild Rice Lake. The FMC criterion in Minnesota is 0.2 μg/g. Wild Rice Lake already meets this criterion without any load reduction. The model showed that a 65% reduction in atmospheric mercury deposition will not, by itself, allow Whiteface Reservoir to meet the criterion in 15 years. Additional best management practices will be needed to reduce 50% of the watershed input.  相似文献   
115.
This study demonstrates the capabilities of a typical medical X-ray Computed Tomography (CT) scanner to non-destructively quantify non-aqueous phase liquid (NAPL) volumes, saturation levels, and three-dimensional spatial distributions in packed soil columns. Columns packed with homogeneous sand, heterogeneous sand, or natural soil, were saturated with water and injected with known quantities of gasoline or tetrachloroethene and scanned. A methodology based on image subtraction was implemented for computing soil porosity and NAPL volumes in each 0.35 mm x 0.35 mm x 1 mm voxel of the columns. Elimination of sample positioning errors and instrument drift artifacts was essential for obtaining reliable estimates of above parameters. The CT data-derived total NAPL volume was in agreement with the measured NAPL volumes injected into the columns. CT data-derived NAPL volume is subject to a 2.6% error for PCE and a 15.5% error for gasoline, at average NAPL saturations as low as 5%, and is mainly due to instrument noise. Non-uniform distributions of NAPL due to preferential flow, and accumulation of NAPL above finer-grained layers could be observed from the data on 3-D distributions of NAPL volume fractions.  相似文献   
116.
    
Natural agglutinins against sperm have been considered to be broadly specific. However, the clumping of sperm from one species of sea urchin in hemolymph from the crab Cardisoma guanhumi, revealed a narrowly specific agglutinin. Additional testing could establish the taxonomic distribution of the reacting antigen.  相似文献   
117.
A. Israel  S. Beer  G. Bowes 《Marine Biology》1991,110(2):195-198
Photosynthetic properties of the common red algaGracilaria conferta, collected from the eastern Mediterranean Sea were investigated in 1989, in order to begin evaluating its adaptative strategies with regard to the inorganic carbon composition of seawater, and to test whether the alleged C4 photosynthesis of anotherGracilaria species is common within the genus. Net photosynthetic rates ofG. conferta were, under ambient conditions of inorganic carbon (ca. 10µM, CO2 and 2.2 mM HCO 3 - ), not sensitive to O2 over the range 10 to 300µM, and the CO2 compensation point was low (ca. 0.005µM). Ribulose-1,5-bisphosphate carboxylase/oxygenase was the major carboxylating enzyme, with a crude extract activity of 175µmol CO2 g–1 fresh wt h–1 while phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase were present at 70 and 20%, respectively, of that activity. No activities of the decarboxylases NAD-and NADP-malic enzyme could be detected. The14C pulse-chase incorporation pattern showed thatG. conferta fixes inorganic carbon via the photosynthetic carbon reduction cycle only, with no evidence for photosynthetic C4 acid metabolism. Photosynthesis at the natural seawater pH of 8.2 was, at 25°C and saturating light, saturated at the ambient inorganic carbon concentration of 2.5 mM. It is proposed that, under ambient inorganic carbon conditions, a CO2 concentrating system other than C4 metabolism provides an internal CO2 concentration sufficient to suppress the O2 effect on ribulose-1,5-bisphosphate carboxylase/oxygenase and, thus, on photorespiration, in a medium where the external free CO2 concentration is lower than theK m(CO2) of the carboxylating enzyme. Since inorganic carbon, under natural saturating light conditions, seems not to be a limiting factor for photosynthesis ofG. conferta, it likely follows that other nutrients limit the growth of this alga in nature.  相似文献   
118.
Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at all times of the growing season. This may be inaccurate in regions with a Mediterranean climate, such as California and the Pacific Northwest, where peak physiological activity occurs early in the season to take advantage of high soil moisture and does not correspond to peak ozone concentrations. It may also misrepresent ecosystems experiencing non-average climate conditions such as drought years. We compared direct measurements of ozone flux into a ponderosa pine canopy with a suite of the most common ozone exposure metrics to determine which best correlated with actual ozone uptake by the forest. Of the metrics we assessed, SUM0 (the sum of all daytime ozone concentrations > 0) best corresponded to ozone uptake by ponderosa pine, however the correlation was only strong at times when the stomata were unconstrained by site moisture conditions. In the early growing season (May and June). SUM0 was an adequate metric for forest ozone exposure. Later in the season, when stomatal conductance was limited by drought. SUM0 overestimated ozone uptake. A better metric for seasonally drought-stressed forests would be one that incorporates forest physiological activity, either through mechanistic modeling, by weighting ozone concentrations by stomatal conductance, or by weighting concentrations by site moisture conditions.  相似文献   
119.
The ability of HCB to interact with the receptor was investigated and . HCB, up to 1.0 μM, was not a potent competitor for the specific binding of [3H]-TCDD (0.3 nM) to rat hepatic cytosol. Administration of HCB (3000 ppm in the diet) to rats for up to 7 days resulted in a decrease in the specific binding of [3H]-TCDD to hepatic cytosol, as compared to pair-fed control rats. These results suggest that HCB may be able to interact, either directly or indirectly, with the hepatic receptor .  相似文献   
120.
ABSTRACT: The environmental setting of the Red River of the North basin within the United States is diverse in ways that could significantly control the areal distribution and flow of water and, therefore, the distribution and concentration of constituents that affect water quality. Continental glaciers shaped a landscape of very flat lake plains near the center of the basin, and gently rolling uplands, lakes, and wetlands along the basin margins. The fertile, black, fine-grained soils and landscape are conducive to agriculture. Productive cropland covers 66 percent of the land area. The principal crops are wheat, barley, soybeans, sunflowers, corn, and hay. Pasture, forests, open water, and wetlands comprise most of the remaining land area. About one-third of the 1990 population (511,000) lives in the cities of Fargo and Grand Forks, North Dakota and Moorhead, Minnesota. The climate of the Red River of the North basin is continental and ranges from dry subhumid in the western part of the basin to subhumid in the eastern part. From its origin, the Red River of the North meanders northward for 394 miles to the Canadian border, a path that is nearly double the straight-line distance. The Red River of the North normally receives over 75 percent of its annual flow from the eastern tributaries as a result of regional patterns of precipitation, evapotranspiration, soils, and topography. Most runoff occurs in spring and early summer as a result of rains falling on melting snow or heavy rains falling on saturated soils. Lakes, prairie potholes, and wetlands are abundant in most physiographic areas outside of the Red River Valley Lake Plain. Dams, drainage ditches, and wetlands alter the residence time of water, thereby affecting the amount of sediment, biota, and dissolved constituents carried by the water. Ground water available to wells, streams, and springs primarily comes from sand and gravel aquifers near land surface or buried within 100 to 300 feet of glacial drift that mantles the entire Red River of the North basin. Water moves through the system of bedrock and glacial-drift aquifers in a regional flow system generally toward the Red River of the North and in complex local flow systems controlled by local topography. Many of the bedrock and glacial-drift aquifers are hydraulically connected to streams in the region. The total water use in 1990, about 196 million gallons per day, was mostly for public supply and irrigation. Slightly more than one half of the water used comes from ground-water sources compared to surface-water sources. Most municipalities obtain their water from ground-water sources. However, the largest cities (Fargo, Grand Forks and Moorhead) obtain most of their water from the Red River of the North. The types and relative amounts of various habitats change among the five primary ecological regions within the Red River of the North basin. Headwater tributaries are more diverse and tend to be similar to middle-reach tributaries in character rather than the lower reaches of these tributaries for the Red River of the North. Concentrations of dissolved chemical constituents in surface waters are normally low during spring runoff and after thunderstorms. The Red River of the North generally has a dissolved-solids concentration less than 600 milligrams per liter with mean values ranging from 347 milligrams per liter near the headwaters to 406 milligrams per liter at the Canadian border near Emerson, Manitoba. Calcium and magnesium are the principal cations and bicarbonate is the principal anion along most of the reach of the Red River of the North. Dissolved-solids concentrations generally are lower in the eastern tributaries than in the tributaries draining the western part of the basin. At times of low flow, when water in streams is largely from ground-water seepage, the water quality more reflects the chemistry of the glacial-drift aquifer system. Ground water in the surficial aquifers commonly is a calcium bicarbonate type with dissolved-solids concentration generally between 300 and 700 milligrams per liter. As the ground water moves down gradient, dissolved-solids concentration increases, and magnesium and sulfate are predominant ions. Water in sedimentary bedrock aquifers is predominantly sodium and chloride and is characterized by dissolved-solids concentrations in excess of 1,000 milligrams per liter. Sediment erosion by wind and water can be increased by cultivation practices and by livestock that trample streambanks. Nitrate-nitrogen concentrations also can increase locally in surficial aquifers beneath cropland that is fertilized, particularly where irrigated. Nitrogen and phosphorous in surface runoff from cropland fertilizers and nitrogen from manure can contribute nutrients to lakes, reservoirs, and streams. Some of the more persistent pesticides, such as atrazine, have been detected in the Red River of the North. Few data are available to conclusively define the presence or absence of pesticides and their break-down products in Red River of the North basin aquifers or streams. Urban runoff and treated effluent from municipalities are discharged into streams. These point discharges contain some quantity of organic compounds from storm runoff, turf-applied pesticides, and trace metals. The largest releases of treated-municipal wastes are from the population centers along the Red River of the North and its larger tributaries. Sugar-beet refining, potato processing, poultry and meat packing, and milk, cheese, and cream processing are among the major food processes from which treated wastes are released to streams, mostly in or near the Red River of the North.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号