首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
安全科学   6篇
废物处理   6篇
环保管理   4篇
综合类   5篇
基础理论   5篇
污染及防治   29篇
评价与监测   5篇
社会与环境   2篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1990年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1962年   1篇
排序方式: 共有62条查询结果,搜索用时 0 毫秒
61.
In order to realistically simulate both chemistry and transport of atmospheric organic pollutants, it is indispensable that the applied models explicitly include coupling between different components of the global environment such as atmosphere, hydrosphere, cryosphere and soil system. A model with such properties is presented.

The atmospheric part of the model is based on the equations in a general contravariant form which permits easy changes of the coordinate system by redefining the metric tensor of a specifically employed coordinate system. Considering a need to include explicitly the terrain effects, the terrain following spherical coordinate system is chosen from among many possible coordinate systems. This particular system is a combination of the Gal-Chen coordinates, commonly employed in mesoscale meteorological models, and the spherical coordinates, typical for global atmospheric models.

In addition to atmospheric transport, the model also simulates the exchange between air and different types of underlying surfaces such as water, soil, snow, and ice. This approach permits a realistic representation of absorption and delayed re-emission of pollutants from the surface to the atmosphere and, consequently, allows to capture hysteresis-like effects of the exchange between the atmosphere and the other components of the system. In this model, the most comprehensive numerical representation of the exchange is that for soil. In particular, the model includes a realistic soil module which simulates both diffusion and convection of a tracer driven by evaporation from the soil, precipitation, and gravity.

The model is applied to a long-term simulation of the transport of pesticides (hexachlorocyclohexanes in particular). Emission fluxes from the soil are rigorously computed on the basis of the realistic data of the agricultural application. All four modelled systems, i.e. atmosphere, soil, hydrosphere and cryosphere, are driven by objectively analysed meteorological data supplemented, when necessary, by climatological information. Therefore, the verification against the observed data is possible. The comparison of the model results and the observations taken at remote stations in the Arctic indicates that the presented global modelling system is able to capture both trends and short-term components in the observed time series of the concentrations, and therefore, provides a useful tool for the evaluation of the source–receptor relationships.  相似文献   

62.
The objectives of this research are to propose a new impact response corridor for the ISO legform impactor and to determine the biofidelity of the current legform impactor with rigid leg and thigh developed by the Transport Research Laboratory (TRL). The latest data obtained from Post Mortem Human Subject (PMHS) knee impact tests were analyzed in connection with the proposal, and biofidelity legform impact tests were conducted using the current rigid legform impactor. New normalized biofidelic corridors of impact force corresponding to adult male 50th percentile (AM50) are proposed. The impact test results indicate the current rigid legform impactor does not have sufficient human knee biofidelity. The present results suggest that human tolerance can not be used directly for the injury reference value of the legform impactor. A conversion method is needed to interpret the data measured by current legform impactors as the injury reference value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号