首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3195篇
  免费   132篇
  国内免费   1142篇
安全科学   252篇
废物处理   163篇
环保管理   221篇
综合类   1897篇
基础理论   499篇
污染及防治   1007篇
评价与监测   152篇
社会与环境   145篇
灾害及防治   133篇
  2024年   5篇
  2023年   55篇
  2022年   151篇
  2021年   124篇
  2020年   92篇
  2019年   99篇
  2018年   107篇
  2017年   148篇
  2016年   128篇
  2015年   152篇
  2014年   243篇
  2013年   307篇
  2012年   246篇
  2011年   255篇
  2010年   227篇
  2009年   206篇
  2008年   206篇
  2007年   208篇
  2006年   200篇
  2005年   143篇
  2004年   97篇
  2003年   137篇
  2002年   97篇
  2001年   85篇
  2000年   106篇
  1999年   93篇
  1998年   76篇
  1997年   76篇
  1996年   92篇
  1995年   75篇
  1994年   63篇
  1993年   52篇
  1992年   39篇
  1991年   21篇
  1990年   20篇
  1989年   12篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1976年   1篇
排序方式: 共有4469条查询结果,搜索用时 734 毫秒
761.
• New method of mineralizing PFCs was proposed. • Activated carbon was regenerated while mineralizing PFCs. • Molten NaOH has good mineralization effect on PFOS and PFBS. Current study proposes a green regeneration method of activated carbon (AC) laden with Perfluorochemicals (PFCs) from the perspective of environmental safety and resource regeneration. The defluorination efficiencies of AC adsorbed perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutanesulfonate (PFBS) using three molten sodium salts and one molten alkali were compared. Results showed that defluorination efficiencies of molten NaOH for the three PFCs were higher than the other three molten sodium salts at lower temperature. At 700°C, the defluorination efficiencies of PFOS and PFBS using molten NaOH reached to 84.2% and 79.2%, respectively, while the defluorination efficiency of PFOA was 35.3%. In addition, the temperature of molten salt, the holding time and the ratio of salt to carbon were directly proportional to the defluorination efficiency. The low defluorination efficiency of PFOA was due to the low thermal stability of PFOA, which made it difficult to be captured by molten salt.The weight loss range of PFOA was 75°C–125°C, which was much lower than PFOS and PFBS (400°C–500°C). From the perspective of gas production, fluorine-containing gases produced from molten NaOH-treated AC were significantly reduced, which means that environmental risks were significantly reduced. After molten NaOH treatment, the regenerated AC had higher adsorption capacity than that of pre-treated AC.  相似文献   
762.
Journal of Material Cycles and Waste Management - With characteristics of high resources, complex composition, and high toxicity, the treatment and disposal of waste printed circuit boards (WPCBs)...  相似文献   
763.
Xu  Jiang  Zhang  Hong  Ding  Junjie  Lu  Yushen  Mu  Bin  Wang  Aiqin 《Journal of Polymers and the Environment》2022,30(6):2405-2418
Journal of Polymers and the Environment - Oil shale semi-coke (OSSC) is the residual solid waste after refining of oil shale, which principally contains organic matter and minerals. The common...  相似文献   
764.
Journal of Polymers and the Environment - Surface modification of cellulose nanocrystals (CNC) is essential for improving their reactivity and adsorption capacity. Oxidation, as a conventional...  相似文献   
765.
Luo  Luna  Wang  Zhen  Guo  Qin  Wei  Xipeng  Hu  Jianpeng  Luo  Yu  Jiang  Jin 《Environmental Chemistry Letters》2022,20(1):91-99

Water contamination by emerging organic pollutants is calling for advanced methods of remediation such as iron-activated sulfite-based advanced oxidation. Sulfate radical, SO4??, and hydroxyl radical, ?OH, are the primary reactive intermediates formed in the Fe(III)/sulfite system, yet the possible involvement of Fe(IV) produced from Fe(II) and persulfates is unclear. Here we explored the role of Fe(IV) in the Fe(III)/sulfite system by methyl phenyl sulfoxide (PMSO) probe assay, electron paramagnetic resonance spectra analysis, alcohol scavenging experiment, and kinetic simulation. Results show that PMSO is partially transformed into methyl phenyl sulfone (PMSO2), thus evidencing Fe(IV) formation. The remaining degradation of PMSO is due to SO4?? and ?OH. The contribution of Fe(IV) versus free radicals is progressively promoted when the Fe(III)-sulfite reaction proceeds, with an upper limit of 80–90%. The contribution of Fe(IV) versus free radicals increases with Fe(III) and sulfite dosages, and decreases with increasing pH. Overall, our findings demonstrate the involvement of Fe(IV) in the Fe-catalyzed sulfite auto-oxidation process.

  相似文献   
766.
• The NPs aggregation in the electrolyte solution is consistent with the DLVO theory. • In NaNO3 and low Ca(NO3)2, EPS alleviates the NPs aggregation by steric repulsion. • In high Ca(NO3)2, EPS accelerates the NPs aggregation by exopolysaccharide bridging. • Ag2S NPs have stronger stability compared with Cit-Ag NPs in aqueous systems. Extracellular polymeric substances (EPS) in activated sludge from wastewater treatment plants (WWTPs) could affect interactions between nanoparticles and alter their migration behavior. The influence mechanisms of silver nanoparticles (Ag NPs) and silver sulfide nanoparticles (Ag2S NPs) aggregated by active EPS sludge were studied in monovalent or divalent cation solutions. The aggregation behaviors of the NPs without EPS followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The counterions aggravated the aggregation of both NPs, and the divalent cation had a strong neutralizing effect due to the decrease in electrostatic repulsive force. Through extended DLVO (EDLVO) model analysis, in NaNO3 and low-concentration Ca(NO3)2 (<10 mmol/L) solutions, EPS could alleviate the aggregation behaviors of Cit-Ag NPs and Ag2S NPs due to the enhancement of steric repulsive forces. At high concentrations of Ca(NO3)2 (10‒100 mmol/L), exopolysaccharide macromolecules could promote the aggregation of Cit-Ag NPs and Ag2S NPs by interparticle bridging. As the final transformation form of Ag NPs in water environments, Ag2S NPs had better stability, possibly due to their small van der Waals forces and their strong steric repulsive forces. It is essential to elucidate the surface mechanisms between EPS and NPs to understand the different fates of metal-based and metal-sulfide NPs in WWTP systems.  相似文献   
767.
• Antibiotic azithromycin employed in graphite electrode for EAB biosensor. • Azithromycin at 0.5% dosage increased the sensitivity for toxic formaldehyde. • Azithromycin increased the relative abundance of Geobacter. • Azithromycin regulated thickness of electroactive biofilm. Extensive research has been carried out for improved sensitivity of electroactive biofilm-based sensor (EAB-sensor), which is recognized as a useful tool in water quality early-warning. Antibiotic that is employed widely to treat infection has been proved feasible in this study to regulate the EAB and to increase the EAB-biosensor’s sensitivity. A novel composite electrode was prepared using azithromycin (AZM) and graphite powder (GP), namely AZM@GP electrode, and was employed as the anode in EAB-biosensor. Different dosages of AZM, i.e., 2 mg, 4 mg, and 8 mg, referred to as 0.25%, 0.5% and 1% AZM@GP were under examination. Results showed that EAB-biosensor was greatly benefited from appropriate dosage of AZM (0.5% AZM@GP) with reduced start-up time period, comparatively higher voltage output, more readable electrical signal and increased inhibition rate (30%-65% higher than control sensor with GP electrode) when exposing to toxic formaldehyde. This may be attributed to the fact that AZM inhibited the growth of non-EAM without much influence on the physiologic or metabolism activities of EAM under proper dosage. Further investigation of the biofilm morphology and microbial community analysis suggested that the biofilm formation was optimized with reduced thickness and enriched Geobacter with 0.5% AZM@GP dosage. This novel electrode is easily fabricated and equipped, and therefore would be a promising way to facilitate the practical application of EAB-sensors.  相似文献   
768.
Judiciously engineering the electrocatalysts is attractive and challenging to exploit materials with high electrocatalytic performance for hydrogen evolution reaction. Herein, we successfully perform the interface engineering by alternately depositing Co–P and Ni–Fe–P films on nickel foam, via facile electroless plating and de-alloying process. This work shows that there is a significant effect of de-alloying process on alloy growth. The electronic structure of layered alloys is improved by interface engineering. The multilayer strategy significantly promotes the charge transfer. Importantly, the Co–P/Ni–Fe–P/NF electrode fabricated by interface engineering exhibits excellent electrocatalytic hydrogen evolution activity with an overpotential of 43.4 mV at 10 mA cm-2 and long-term durability for 72 h in alkaline medium (1 mol L-1 KOH). The innovative strategy of this work may aid further development of commercial electrocatalysts.  相似文献   
769.
Environmental Science and Pollution Research - Erhai Lake is the second largest freshwater lake in Yunnan Province but suffers from the deterioration of water quality and agricultural non-point...  相似文献   
770.
Environmental Science and Pollution Research - Alkyl polyglycosides (APG), a biodegradable biosurfactant, have been widely used in environmental pollution control. However, the application of APG...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号