A novel composite with an enhanced photocatalytic activity was prepared and applied to study the removal of bezafibrate (BZF), a hypolypemic pharmaceutical, from an aqueous environment. For the enhancement of titanium dioxide photoactivity a fullerene derivative, 2-(ferrocenyl) fulleropyrrolidine (FcC60), was synthesized and applied. Obtained composite was found to show a higher catalytic activity than pristine TiO2. Therefore, high hopes are set in composites that are based on carbonaceous nanomaterials and TiO2 as a new efficient photocatalysts. 相似文献
Metal levels in eggs can often be used as an indicator of exposure and of potential effects. In previous work at Agassiz National Wildlife Refuge, northwestern Minnesota, the levels of several heavy metals were shown to be significantly higher in the eggs of eared grebes (Podiceps nigricollis) compared to those in the eggs of Franklin’s gulls (Larus pipixcan), black-crowned nightherons (Nycticorax nycticorax) and double-crested cormorants (Phalacrocorax auritus, except for mercury). In the present study we test the hypothesis that there are no differences in the levels of heavy metals in eggs of three species of grebes nesting at Agassiz National Wildlife Refuge (1997, 1999). There were significant differences in levels of selenium, manganese and mercury in the eggs of the grebes collected in 1997, with pied-billed grebe (Podilymbus podiceps) having significantly higher levels of manganese and mercury, and significantly lower levels of selenium, than eared or red-necked grebes (Podiceps grisegena). In 1999, pied-billed grebes had significantly higher levels of mercury, but lower levels of selenium and tin than the other species. The only pattern that was significant and consistent among yearswas selenium; in both years pied-billed grebes had lower levels than the other species. For eared grebes, there was a decline from 1997 to 1998, and again to 1999 for arsenic, cadmium, and selenium. Levels of mercury in the eggs of grebes were not as high, however, as those found in cormorants or night-herons sampled in 1994 at Agassiz National Wildlife Refuge. There were few consistent patterns in the relationships among metals in eared grebe eggs (with the largest sample sizes). The possible reasons for the high levels of some metals in eggs of grebes are unknown, but presumably egg levels represent exposure on the wintering grounds or migratory routes. In comparison to eggs of other birds: 1) the mean levels for manganese were at the high end of the range, and the mean was an order of magnitude higher than the median for the studies examined, 2) mean levels were above the median in the eggs of other birds for lead (red-necked grebe), mercury (pied-billed grebe) and selenium (eared and red-necked grebe). 相似文献
Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO2), gridded EI Open-source Data Inventory for Anthropogenic CO2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.
To recognize properties of a mixture of Vistula sand (medium sand acc. to USCS) with Slovak zeolite as reactive materials suitable for permeable reactive barriers proposed for protection of groundwater environment in vicinity of old landfills comprehensive laboratory investigations were performed. The present study investigates the removal of contaminants specific for landfill leachates onto zeolite-sand mixtures containing 20%, 50% and 80% of zeolite (ZS20, ZS50 and ZS80). Taking into account the results of batch tests it was concluded that the Langmuir isotherm best fitted the data. It was observed that the presence of ammonium, calcium and magnesium decreases the removal efficiency of copper by 32%. Column tests of contaminant migration through the attenuation zone of the reactive materials were interpreted using the software package CXTFIT, which solves a one-dimensional advection-dispersion equation. Column test results also indicate the strong influence of the presence of interfering substances on copper immobilisation; dynamic sorption capacities decrees twofold. Throughout the landfill leachate flow through ZS80 sample, a constant reduction of NH+4 (at 100%), K+ (at 93%) and Fe total (at an average of 86%) were observed. There was no reduction in chemical oxygen demand and biochemical oxygen demand. 相似文献
With growing urban populations and climate change, urban flooding is an important global issue, even in dryland regions. Flood risk assessments are usually used to identify vulnerable locations and populations, flooding experience patterns, or levels of concern about flooding, but rarely are all of these approaches combined. Furthermore, the social dynamics of flood concerns, exposure, and experience are underexplored. We combined geographic and survey data on household‐level measures of flood experience, concern, and exposure in Utah's urbanizing Wasatch Front. We asked: (1) Are socially vulnerable groups more likely to be exposed to flood risk? (2) How common are flooding experiences among urban residents, and how are these experiences related to sociodemographic characteristics and exposure? and (3) How concerned are urban residents about flooding, and does concern vary by exposure, flood experience, and sociodemographic characteristics? Although floodplain residents were more likely to be White and have higher incomes, respondents who were of a racial/ethnic minority, were older, had less education, and were living in floodplains were more likely to report flood experiences and concern about flooding. Flood risk management approaches need to address social as well as physical sources of vulnerability to floods and recognize social sources of variation in flood experiences and concern. 相似文献
The spores of Cladosporium Link. are often present in the air in high quantities and produce many allergenic proteins, which may lead to asthma. An aerobiological spore monitoring program can inform patients about the current spore concentration in air and help their physicians determine the spore dose that is harmful for a given individual. This makes it possible to develop optimized responses and propose personalized therapy for a particular sensitive patient. The aim of this study was to assess the extent of the human health hazard posed by the fungal genus Cladosporium. For the first time, we have determined the number of days on which air samples in Poland exceeded the concentrations linked to allergic responses of sensitive patients, according to thresholds established by three different groups(2800/3000/4000 spores per 1 m~3 of the air). The survey was conducted over three consecutive growing seasons(April–September, 2010–2012) in three cities located in different climate zones of Poland(Poznan, Lublin and Rzeszow). The average number of days exceeding 2800 spores per cubic meter(the lowest threshold) ranged from 61(2010) through 76(2011) to 93(2012), though there was significant variation between cities. In each year the highest concentration of spores in the air was detected in either Poznan or Lublin, both located on large plains with intensive agriculture. We have proposed that an effective, science-based software platform to support policy-making on air quality should incorporate biological air pollutant data,such as allergenic fungal spores and pollen grains. 相似文献
Linking water and land is essential in planning for the future of the western United States. We propose the concept of ‘water-smart growth’ and explore its implications through incorporating water considerations into the SLEUTH land-use model. The urban growth trajectory in Cache County, Utah, is modeled from 2007 to 2030 under four different scenarios: current trend; smart growth; water-smart growth with moderate implementation; and water-smart growth with full implementation. Comparisons of simulation results illustrate the extent and ways in which water-smart growth would alter current established land-use growth patterns. The approach represents an initial step to better integrate land and water in urban growth modeling and planning. This study's purposes are to provide improved understanding and representation of linkages between water and land in urbanizing environments, offer insights from a set of modeled options, and demonstrate the significance of integrating land and water in planning practices. 相似文献