Currently, a large number of companies consider recycling of materials as an opportunity to maximize profits and to reduce the environmental impact generated by these materials after they are disposed. However, there is also a strong constraint on the use of recycled materials mainly due to the lack of technical/scientific information, which would relate their physical properties to their recycling cycle. This information should be used in the initial phase of the product design to serve as reference for the simulation of a project to point out the physical properties obtained from recycling the Projected material (Pm). Thus, it would be possible to foresee some recycling strategy to keep the good characteristics of recycled materials by encouraging their use, regardless of the product to be designed.Therefore, the Recycling Cycle of Materials (RCM) is a tool that provides scientific/technical support in the selection of materials. It uses the information related to the physical properties of the Pm as a parameter for product design after five recycling cycles. For the case study, this tool has been applied to obtain the basic material of ABS/PC blend. Subsequently, this blend was evaluated using DSC, FTIR, traction and impact methods to obtain delimiting data for the definition of the mechanical properties resulting from the application of RCM. 相似文献
Climate change is a global phenomenon that affects biophysical systems and human well-being. The Paris Agreement of the United Nations Framework Convention on Climate Change entered into force in 2016 with the objective of strengthening the global response to climate change by keeping global temperature rise this century well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C. The agreement requires all Parties to submit their “nationally determined contributions” (NDCs) and to strengthen these efforts in the years ahead. Reducing carbon emissions from deforestation and forest degradation is an important strategy for mitigating climate change, particularly in developing countries with large forests. Extensive tropical forest loss and degradation have increased awareness at the international level of the need to undertake large-scale ecological restoration, highlighting the need to identify cases in which restoration strategies can contribute to mitigation and adaptation. Here we consider Brazil as a case study to evaluate the benefits and challenges of implementing large-scale restoration programs in developing countries. The Brazilian NDC included the target of restoring and reforesting 12 million hectares of forests for multiple uses by 2030. Restoration of native vegetation is one of the foundations of sustainable rural development in Brazil and should consider multiple purposes, from biodiversity and ecosystem services conservation to social and economic development. However, ecological restoration still presents substantial challenges for tropical and mega-diverse countries, including the need to develop plans that are technically and financially feasible, as well as public policies and monitoring instruments that can assess effectiveness. The planning, execution, and monitoring of restoration efforts strongly depend on the context and the diagnosis of the area with respect to reference ecosystems (e.g., forests, savannas, grasslands, wetlands). In addition, poor integration of climate change policies at the national and subnational levels and with other sectorial policies constrains the large-scale implementation of restoration programs. The case of Brazil shows that slowing deforestation is possible; however, this analysis highlights the need for increased national commitment and international support for actions that require large-scale transformations of the forest sector regarding ecosystem restoration efforts. Scaling up the ambitions and actions of the Paris Agreement implies the need for a global framework that recognizes landscape restoration as a cost-effective nature-based solution and that supports countries in addressing their remaining needs, challenges, and barriers.
The manufacture of traditional ceramic products (ceramic tiles, roof tiles, and bricks) is often associated with the emission of F, Cl, and S compounds during the firing stage. According to the literature, fluorine emissions can be reduced by adding CaCO3 to the raw materials mixture used in fabricating these products. However, data available to the authors indicate that this procedure, which has been successfully applied in manufacturing structural ceramics (roof tiles and bricks), is ineffective in ceramic tile manufacture and modifies tile end properties.This paper examines the possibility of reducing such emissions by applying coatings of alkaline-earth carbonates on to the ceramic tile bottom surface to retain the acid compounds emitted during tile firing. The effectiveness of MgCO3, CaCO3, SrCO3, and BaCO3 coatings for retaining these acid emissions was studied, using the evolved gas analysis (EGA) technique with a TG-DSC-FTIR-QM instrument.The SrCO3 coating was found to provide the greatest retention, showing that SO2 and HCl were retained more efficiently than HF. The presence of fluorides, chlorides, and sulphates of Ca, Sr, and Ba was verified in the respective fired coatings, confirming the existence of chemical reactions between the emitted acid compounds and the coating materials at high temperature. 相似文献