首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3730篇
  免费   7篇
  国内免费   117篇
安全科学   85篇
废物处理   156篇
环保管理   347篇
综合类   415篇
基础理论   241篇
污染及防治   1848篇
评价与监测   488篇
社会与环境   233篇
灾害及防治   41篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2018年   2篇
  2017年   10篇
  2016年   1篇
  2015年   12篇
  2014年   4篇
  2013年   5篇
  2012年   347篇
  2011年   464篇
  2010年   61篇
  2009年   105篇
  2008年   448篇
  2007年   425篇
  2006年   356篇
  2005年   285篇
  2004年   247篇
  2003年   249篇
  2002年   191篇
  2001年   149篇
  2000年   104篇
  1999年   50篇
  1998年   6篇
  1997年   24篇
  1996年   14篇
  1995年   20篇
  1994年   12篇
  1993年   22篇
  1992年   16篇
  1991年   21篇
  1990年   20篇
  1989年   12篇
  1988年   25篇
  1987年   14篇
  1986年   7篇
  1985年   24篇
  1984年   12篇
  1983年   19篇
  1982年   12篇
  1981年   10篇
  1980年   11篇
  1979年   7篇
  1978年   7篇
  1977年   2篇
  1975年   4篇
  1974年   3篇
排序方式: 共有3854条查询结果,搜索用时 15 毫秒
401.
Simulated lung fluids are solutions designed to mimic the composition of human interstitial lung fluid as closely as possible. Analysis of mineral dusts using such solutions has been used to evaluate the respiratory bioaccessibility of various elements for which solubility in the lungs is a primary determinant of reactivity. The objective of this study was to employ simulated lung fluid analysis to investigate the respiratory bioaccessibility of nickel in soils. Current occupational guidelines in Australia regulate nickel compounds in terms of water solubility, though this may not be an accurate estimation of the total nickel that will dissociate in the lungs. Surface soils were collected from the city of Kalgoorlie in Western Australia, the site of an operational nickel smelter and metal mining activities. The fraction of the samples less than 10 μm was extracted from the soil, and it was this sub-10-μm fraction that was found to hold most of the total nickel present in the soil. The fine fraction was analyzed using a simulated lung fluid (modified Gamble’s solution) to isolate the nickel phases soluble in the lungs. In addition, a sequential extraction was employed to compare the bioaccessible fraction to those dissolved from different binding forms in the soil. In all samples, the simulated lung fluid extracted more nickel than the two weakest leaches of the sequential extraction combined, providing a more representative nickel bioaccessibility value than the current water leach method.  相似文献   
402.
One of the important cultural practices that affect methane and nitrous oxide emissions from tropical rice plantations is the water drainage system. While drainage can reduce methane emissions, it can also increase nitrous oxide emissions, as well as reduce yields. In this experiment, four different water drainage systems were compared in a rice field in central Thailand including: (1) continuous flooding, (2) mid-season drainage, (3) multiple drainage and (4) a local method (drainage was done according to local cultural practice) in order to find a system of drainage that would optimize yields while simultaneously limiting methane and nitrous oxide emissions. Methane and nitrous oxide emission were observed and compared with rice yield and physical changes of rice plants. It was found that drainage during the flowering period could reduce methane emission. Interestingly, nitrous oxide emission was related to number of drain days rather than the frequency of draining. Fewer drain days can help reduce nitrous oxide emission. The mid-season drainage and the multiple drainage, with 6.9% and 11.4% reduction in rice yield, respectively, had an average methane emission per crop 27% and 35% lower when compared to the local method. Draining with fewer drain days during the flowering period was recommended as a compromise between emissions and yield. The field drainage can be used as an option to reduce methane and nitrous oxide emissions from rice fields with acceptable yield reduction. Mid-season drainage during the rice flowering period, with a shortened drainage period (3 days), is suggested as a compromise between the need to reduce global warming and current socio-economic realities.  相似文献   
403.
The partition coefficients (Koc) of 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) with respect to a variety of humic substances (HSs) were evaluated by a method involving solid-phase microextraction and gas chromatography-electron capture detection. The log Koc values for each of the HS samples were in the range of 6.4-7.7. The log Koc values for HAs from tropical peat, brown forest and ando soils were in the range of 7.3-7.6, similar to the calculated value for the octanol-water partition coefficient (log Koc=7.56). In contrast, the log Koc values for FAs and peat HAs were 0.5-1 unit lower than the calculated value. The parameters for the polarity of HSs, as calculated from (N+O)/C, O/C atomic ratios and the carboxyl group content, were numerically similar related to the log Koc for HpCDD. These results show that the Koc values for HpCDD are significantly influenced by the polarity of HSs.  相似文献   
404.
The effects of chronic exposure to fenvalerate, a synthetic pyrethroid insecticide, on the cladoceran Daphnia galeata mendotae were evaluated under laboratory conditions. The daphnids were exposed for their entire life cycle to concentrations ranging from 0.005 to 0.1 microg fenvalerate litre(-1). The parameters used to determined toxicity were survival, time to first reproduction, reproductive frequency, number of young per brood, cumulative brood size, intrinsic rate of natural increase (r(m)), generation time (T) and net reproductive rate (R(0)). A concentration of 0.005 microg fenvalerate litre(-1) resulted in an increase in longevity but a decrease in production of young. Higher concentrations caused a decrease in survival. Studies of shorter duration than the complete life cycle of the organisms would not have detected toxicity at such low levels. The intrinsic rate of natural increase, r(m), was not affected by fenvalerate until concentration reached 0.05 microg litre(-1) and r(m) decreased to 0.113 from 0.238. A concentration of 0.01 microg litre(-1) caused the net reproductive rate, R(0), and the generation time, T, to decrease to 73.2 offspring per female and 17.3 days from 125.9 offspring per female and 20.3 days, respectively.  相似文献   
405.
The use of ultra filtration in trace metal speciation studies in sea water   总被引:1,自引:0,他引:1  
During this work, size fractionation technique "ultra filtration" is used in speciation studies of trace elements in the coastal sea water. Filtration is the most commonly used method to fractionate trace metal species, but often only "dissolved" and "particulate" fraction. The purpose of the present study is to determine colloidal and suspended particulate concentrations of Fe, Zn, Cu, Ni, and Mn in sea water. Suspended particulate matter were separated in three different size groups namely (>2.7 microm, <2.7->0.45 microm and <0.45->0.22 microm) by suction filtration using cellulose acetate and nitrate filter membranes. Thereafter to concentrate the solution with colloidal particle <0.22 microm-1.1 nm (0.5 k Nominal Molecular Weight cut-off Limit {NMWL}), the solution obtained from filtration through <0.22 microm, is sequentially passed through the ultra-filtration membranes having pore diameters of 14 nm (300 k NMWL), 3.1 nm (50 k NMWL), 2.2 nm (30 k NMWL), 1.6 nm (10 k NMWL) and 1.1 nm (0.5 k NMWL) by using Stirred Ultra-filtration Cells, operating in concentration mode. The concentration of Fe, Zn, Cu, Ni, and Mn were measured in suspended and dissolved fraction by ion chromatography, ICP-AES and Atomic Absorption Spectrometer. The salinity of the solution in various dissolved fractions of sequential filtration varies between 30.89-34.22 parts per thousand. The maximum concentrations of colloidal Zn, Cu, Ni and Mn in dissolved fraction were in <2.2->1.6 nm fraction. In case of Fe, colloidal fractions <2.2->1.6 nm and <1.6-<1.1 nm shows higher concentration. The concentration of Zn, Cu, Ni and Mn increase with decrease in size in suspended particulate matter, while the reverse is observed in case of Fe. This size separation data that specifies the partitioning of metals between dissolved and suspended solid phases is necessary for developing physically based models of metal transport in aquatic system.  相似文献   
406.
Fe(III)/Cr(III) hydroxide, a waste material from the fertilizer industry, has been used for the adsorption of Cr(VI) from aqueous solution, over a range of initial metal ion concentrations (5-30 mg litre(-1)), agitation times (1-180 min), adsorbent dosages (100-1200 mg per 50 ml), temperatures (24, 29 and 38 degrees C) and pH values (4.5-10). The adsorption of Cr(VI) increased with the initial concentration of Cr(VI) and with temperature. The process of uptake follows both the Langmuir and the Freundlich isotherm models. The applicability of Lagergren and empirical kinetic models has also been investigated. Almost quantitative removal of Cr(VI) at 10 mg litre(-1) in a 50-ml solution by 500 mg of adsorbent was found at an equilibrium pH of 5.6. The efficiency of chromium removal was also tested using wastewater from the chromium plating industry.  相似文献   
407.
Porteous F  Killham K  Meharg A 《Chemosphere》2000,41(10):1549-1554
The flow of carbon from plant roots into soil supports a range of microbial processes and is therefore critical to ecosystem function and health. Pollution-induced stress, which influences rhizosphere C flow is of considerable potential importance, and therefore needs to be evaluated. This paper reports on a method, based on reporter gene technology, for quantifying pollutant effects on rhizosphere C flow. The method uses the lux-marked rhizobacterium Pseudomonas fluorescens, where bioluminescence output of this biosensor is directly correlated with the metabolic activity and reports on C flow in root exudate. Plantago lanceolata was treated with paraquat (representing a model pollutant stress) in a simple microcosm system. The lux-biosensor response correlated closely with C concentrations in the exudate and demonstrated that the pollutant stress increased the C flow from the plantago roots, 24 h after application of the herbicide. The lux-reporter system therefore potentially offers a technique for use in assessing the impact of pollutant stress on rhizosphere C flow through the soil microbial biomass.  相似文献   
408.
Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRD-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coli concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.  相似文献   
409.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
410.
A time course study on the sublethal toxicity of CuSO4 on tissue carbohydrate metabolites level and their phosphatases activity in Achatina fulica revealed differential response. The levels of total carbohydrates and glycogen in the body mass muscle, foot muscle and hemolymph revealed their involvement in the endogenous derivation of energy during stress. The same metabolites in digestive gland revealed its importance to reproduction and development. The lactate accumulated in all the tissues implied the mechanism of CuSO4 toxicosis in the metabolic acidosis. The decrease of pyruvate in foot muscle, body mass muscle and hemolymph inferred the preponderance of glycolysis in energy derivation. In contrast, the pyruvate concentration in digestive gland revealed its differential response in the stress metabolic sequence of changes, as a unique tissue. The lactate/pyruvate ratio and the calcium content in tissues constitute direct evidences for the snails adaptation to toxic stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号