首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14313篇
  免费   100篇
  国内免费   155篇
安全科学   346篇
废物处理   591篇
环保管理   1556篇
综合类   3239篇
基础理论   3336篇
环境理论   6篇
污染及防治   3566篇
评价与监测   1100篇
社会与环境   758篇
灾害及防治   70篇
  2022年   126篇
  2021年   106篇
  2019年   100篇
  2018年   193篇
  2017年   202篇
  2016年   299篇
  2015年   226篇
  2014年   399篇
  2013年   1021篇
  2012年   447篇
  2011年   583篇
  2010年   467篇
  2009年   522篇
  2008年   562篇
  2007年   576篇
  2006年   536篇
  2005年   492篇
  2004年   450篇
  2003年   454篇
  2002年   430篇
  2001年   595篇
  2000年   372篇
  1999年   260篇
  1998年   147篇
  1997年   164篇
  1996年   171篇
  1995年   188篇
  1994年   179篇
  1993年   131篇
  1992年   164篇
  1991年   172篇
  1990年   168篇
  1989年   141篇
  1988年   156篇
  1987年   96篇
  1986年   128篇
  1985年   127篇
  1984年   122篇
  1983年   114篇
  1982年   120篇
  1981年   120篇
  1980年   87篇
  1979年   99篇
  1978年   101篇
  1976年   92篇
  1974年   104篇
  1972年   87篇
  1971年   85篇
  1967年   100篇
  1964年   92篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
601.
The understanding and evaluation of the possible interactions of various naturally occurring radionuclides in the world's third largest man-made dam, Nagarjuna Sagar located in Andhra Pradesh, India and built on river Krishna assumed significance with the finding of uranium deposits in locations near the dam. For the present work, surface soil samples from the mineralized area of Lambapur, Mallapuram, Peddagattu and sediment core samples from the Nagarjuna Sagar dam were analyzed for naturally occurring radionuclides namely uranium and thorium using gamma spectrometric technique. Also toxic elements lead and chromium were analysed by the Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) technique. Surface soil samples show a variation from 25 to 291 Bq/kg (2.02–23.5 mg/kg) for 238U and 32–311 Bq/kg (7.9–76.9 mg/kg) for 232Th. U/Th concentration ratio in surface soil samples ranged from 0.19 to 0.31 and was found comparable with the nation wise average of 0.26. The study of sediment core samples reflected higher U/Th concentration ratio of 0.30–0.33 in the bottom section of the core as compared to 0.22–0.25 in the upper section. The concentration ratio in the upper section of the core was similar to the ratio 0.23 found in the western Deccan Basalt region through which the river originates. A higher concentration of lead and chromium was observed in the upper section of the core compared to bottom section indicating the impact of river input on the geochemical character of dam sediment.  相似文献   
602.
An anaerobic plume of process-affected groundwater was characterized in a shallow sand aquifer adjacent to an oil sands tailings impoundment. Based on biological oxygen demand measurements, the reductive capacity of the plume is considered minimal. Major dissolved components associated with the plume include HCO3, Na, Cl, SO4, and naphthenic acids (NAs). Quantitative and qualitative NA analyses were performed on groundwater samples to investigate NA fate and transport in the subsurface. Despite subsurface residence times exceeding 20 years, significant attenuation of NAs by biodegradation was not observed based on screening techniques developed at the time of the investigation. Relative to conservative tracers (i.e., Cl), overall NA attenuation in the subsurface is limited, which is consistent with batch sorption and microcosm studies performed by other authors. Insignificant biological oxygen demand and low concentrations of dissolved As (< 10 µg L− 1) in the plume suggest that the potential for secondary trace metal release, specifically As, via reductive dissolution reactions driven by ingress of process-affected water is minimal. It is also possible that readily leachable As is not present in significant quantities within the sediments of the study area. Thus, for similar plumes of process-affected groundwater in shallow sand aquifers which may occur as oil sands mining expands, a reasonable expectation is for NA persistence, but minimal trace metal mobilization.  相似文献   
603.
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A stoichiometrically balanced increase in magnesium concentration with decreasing ammonium and potassium concentrations indicated that cation exchange was the sorption mechanism in the slough porewater. Only a partial mass balance could be determined for cations exchanged for ammonium and potassium in the aquifer, indicating that some irreversible sorption may be occurring.Although wetlands commonly are expected to decrease fluxes of contaminants in riparian environments, enhanced attenuation of the leachate contaminants in the slough sediment porewater compared to the aquifer was not observed in this study. The lack of enhanced attenuation can be attributed to the fact that the anoxic plume, comprised largely of recalcitrant DOC and reduced inorganic constituents, interacted with anoxic slough sediments and porewaters, rather than encountering a change in redox conditions that could cause transformation reactions. Nevertheless, the attenuation processes in the narrow zone of groundwater/surface-water interaction were effective in reducing ammonium concentrations by a factor of about 3 during lateral transport across the slough and by a factor of 2 to 10 before release to the surface water. Slough porewater geochemistry also indicated that the slough could be a source of sulfate in dry conditions, potentially providing a terminal electron acceptor for natural attenuation of organic compounds in the leachate plume.  相似文献   
604.
Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PCn, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg−1 dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PCn, and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg −1 EDTA, vetiver accumulated 4460 and 480 mg Pb kg−1 dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC1) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC1-Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass.  相似文献   
605.
Organic aerosol chemical markers from normalized concentrations of independent measurements of mass fragments (using Aerosol Mass Spectrometry, AMS) are compared to bond-based functional groups (from Fourier Transform Infrared spectroscopy, FTIR) during eight field projects in the western hemisphere. Several field projects show weak correlations between alcohol group fractions and m/z 60 fractions, consistent with the organic hydroxyl groups and the fragmentation of saccharides, but the weakness of the correlations indicate chemical differences among the relationships for ambient aerosols in different regions. Carboxylic acid group fractions and m/z 44 fractions are correlated weakly for three projects, with correlations expected for aerosols dominated by di-acid compounds since their fragmentation is typically dominated by m/z 44. Despite differences for three projects with ratios of m/z 44 to m/z 57 fragments less than 10, five projects showed a linear trend between the project-average m/z 44 to m/z 57 ratio and the ratio of acid and alkane functional groups. While this correlation explains only a fraction of the fragment and bond variability measured, the consistency of this relationship at multiple sites indicates a general agreement with the interpretation of the relative amount of m/z 44 as a carboxylic acid group marker and m/z 57 as an alkane group marker.  相似文献   
606.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   
607.
Previous studies have suggested that the ongoing global climate change will likely increase the intensity and frequency of extreme weather, such as typhoons. Since the beginning of global warming, it has become necessary to understand the influence of typhoons on air quality. Rare data, especially particulate measurements data could be used to establish the relationship between the air pollution and typhoons. One of main limiting factors is that most of the previous chemical analyses of particulates used a relatively long sampling time, which could dilute the temporal impact of particulate characteristics and their sources. This work, depending more time-resolved measurements, focus on the characteristics and sources of high particulate matter levels and the influence of typhoons and the Pacific high system. Depending on the measurements, two pollutant groups were clearly identified in this work. The first pollutant group was the emissions from neighboring riverbeds under the strong circulation of the typhoon in the driest season and characterized as high coarse particle concentrations with high mass fraction of Ca2+. The second pollutant group was characterized as the formation and transport of secondary particles with prevalent ions of NH4+, NO3?, and SO42? and occurred in the sea-land breeze circulation under the influence the Pacific high system.  相似文献   
608.
The perils of unplanned urbanization and increasing pressure of human activities on hydro-geomorphologic system often result in modification of the existing recharge mechanism, which leads to many environmental consequences. In the present research, an attempt has been made to investigate the applicability of remote sensing and geographical information system (GIS) in dealing with spatial and temporal variability of dynamic phenomena, like urbanization and its impact on groundwater. This paper covers primarily, quantitative and qualitative impacts of urban growth on the behavior of aquifer in Ajmer city (India). Urban growth of the Ajmer city in last 17 years has been estimated from the satellite images. Database related to urbanization and groundwater has been created in GIS. Groundwater recharge has been computed using a water balance approach known as Water Level Fluctuation Methodology. Recharge estimation methodology has been implemented in GIS to introduce the spatial variability of hydro-geological characteristics. Further, temporal and spatial variations in groundwater quality and quantity have been correlated with urban growth using overlay analysis in GIS. The study reveals a general decline in water table and quality with urbanization. Further, remote sensing and GIS technologies have been found useful in assessment of spatial and temporal phenomena of urbanization and its impact on groundwater system.  相似文献   
609.
610.
Heavy metals in the aquatic environment have, to date, come essentially from naturally occurring geochemical resources. However, this has been enhanced by anthropogenic activities such as crude oil exploration and exploitation activities, resulting in pollution in the Taylor Creek aquatic ecosystem. The catfish species Bagrus bayad and other environmental segments were collected from five selected sites along Taylor Creek, southern Nigeria, and total metal concentration determined. The concentration levels of the metals in B. bayad were higher than the values reported in the literature for fresh fish and may lead to a higher risk of harmful effects. The bivariate regression models relating metals in B. bayad and metals in the surface waters were significant (R 2 ≥ 0.9002). The log (bio-concentration factor; BCF) values of Cr and Zn in B. bayad were the highest, whereas the lowest was found for Ni. The ecological distribution of the log (BCF) values was, for all the heavy metals, moderately stable over the creek. All log-transformed bio-magnification factors (BMF) in the creek were positive, which indicates that the metal concentration was greater in B. bayad than in suspended particulate matter (SPM). The absolute log (BMF) values of heavy metals can, therefore, be ranked in order of decreasing magnitude: Cr (3.26) > Zn (2.99) > Cd (2.93) > Fe (2.76) > Pb (2.66) > Mn (2.36) > Ni (2.24). This sequence indicates that toxic metals such as Cd, Cr and Pb are undergoing significant bio-reduction from SPM to B. bayad. The degree of correlation between the metals was different in B. bayad, which suggests that the sources of the metals polluting Taylor Creek were diverse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号