首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   755篇
  免费   3篇
  国内免费   3篇
安全科学   17篇
废物处理   20篇
环保管理   67篇
综合类   450篇
基础理论   67篇
污染及防治   101篇
评价与监测   30篇
社会与环境   9篇
  2017年   9篇
  2016年   6篇
  2015年   15篇
  2014年   12篇
  2013年   22篇
  2012年   10篇
  2011年   17篇
  2010年   19篇
  2009年   26篇
  2008年   17篇
  2007年   22篇
  2006年   21篇
  2005年   21篇
  2004年   11篇
  2003年   15篇
  2002年   14篇
  2001年   8篇
  2000年   8篇
  1999年   15篇
  1996年   6篇
  1995年   7篇
  1985年   7篇
  1984年   8篇
  1982年   6篇
  1967年   10篇
  1966年   11篇
  1965年   10篇
  1964年   6篇
  1963年   13篇
  1962年   9篇
  1961年   15篇
  1960年   9篇
  1959年   10篇
  1958年   20篇
  1957年   10篇
  1956年   12篇
  1955年   16篇
  1954年   14篇
  1953年   6篇
  1952年   9篇
  1951年   6篇
  1939年   10篇
  1938年   12篇
  1937年   6篇
  1933年   8篇
  1932年   8篇
  1928年   9篇
  1927年   6篇
  1926年   8篇
  1922年   10篇
排序方式: 共有761条查询结果,搜索用时 15 毫秒
31.
Karl H  Khandker S  Alder L 《Chemosphere》1999,39(14):2497-2506
The levels of three toxaphene indicator compounds were determined in individual lots of herring, redfish, Greenland halibut and farmed salmon. Concentration levels of the three marine fish species were characterised by a right-skewed frequency distribution whereas residue concentrations in farmed salmon were normally distributed. The toxaphene concentrations in the edible part of redfish, herring and Greenland halibut were found to be positively correlated to the sizes and thus to age. As results show, for representative sampling of a landed catch, not more than 10 individual fishes from typical size classes of a lot are necessary for a pooled sample.  相似文献   
32.
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO(3)-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO(3)-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha(-1) yr(-1). Percolate was collected with zero-tension lysimeters. Flow-weighted NO(3)-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L(-1) for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO(3)-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO(3)-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO(3)-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.  相似文献   
33.
Photochemistry studies can be helpful in assessing the environmental fate of chemicals. Photochemical reactions lead to the formation of by-products that can exhibit different toxicological properties from the original compound. For this reason the photochemical behavior of the herbicide acifluorfen (5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) in the presence of different solvents was studied. Photochemical reactions were carried out using a high-pressure mercury arc and a solar simulator. Kinetic parameters and quantum yields were determined. The identification of photoproducts was performed by mass spectrometry and [1H] nuclear magnetic resonance (NMR). Nitrofluorfen, hydroxy-nitrofluorfen, 2-chloro-4-(trifluoromethyl)phenol, 5-trifluoromethyl-5'-nitrodibenzofuran, and other derivatives were identified. The photochemical reactions were also carried out in the presence of either a singlet or a triplet quencher, and in the presence of either a radical initiator or a radical inhibitor. Substances used as inhibitors of the excited levels T1 and S1 showed that photodegradation of acifluorfen begins from a singlet state S1 through a pi,pi* transition. The role of free radicals in the photodegradation of acifluorfen was determined and a radical mechanism was proposed. Toxicity tests against Daphnia magna Strauss showed that acifluorfen was not toxic at a concentration of 0.1 mM; however, photoproducts formed after 36 h of UV exposure of the herbicide induced a remarkable toxicity to the test organism.  相似文献   
34.
Zero tillage is recognized as a potential measure to sequester carbon dioxide in soils and to reduce CO2 emissions from arable lands. An up-scaling approach of the output of the Environmental Policy Integrated Climate (EPIC) model with the information system SLISYS-BW has been used to estimate the CO2-mitigation potential in the state of Baden-Württemberg (SW-Germany). The state territory of 35,742 km2 is subdivided into eight agro-ecological zones (AEZ), which have been further subdivided into a total of 3976 spatial response units. Annual CO2-mitigation rates where estimated from the changes in soil organic carbon content comparing 30 years simulations under conventional and zero tillage. Special attention was given to the influence of tillage practices on the losses of organic carbon through soil erosion, and consequently on the calculation of CO2-mitigation rates. Under conventional tillage, mean carbon losses through erosion in the AEZ were estimated to be up to 0.45 Mg C ha−1 a−1. The apparent CO2-mitigation rate for the conversion from conventional to zero tillage ranges from 0.08 to 1.82 Mg C ha−1 a−1 in the eight AEZ, if the carbon losses through soil erosion are included in the calculations. However, the higher carbon losses under conventional tillage compared to zero tillage are composed of both, losses through enhanced CO2 emissions, and losses through intensified soil erosion. The adjusted net CO2-mitigation rates of zero tillage, subtracting the reduced carbon losses through soil erosion, are between 0.07 and 1.27 Mg C ha−1 a−1 and the estimated net mitigation rate for the entire state amounts to 285 Gg C a−1. This equals to 1045 Gg CO2-equivalents per year with the cropping patterns in the reference year 2000. The results call attention to the necessity to revise those estimation methods for CO2-mitigation which are exclusively or predominantly based on the measurements of differential changes in total soil organic carbon without taking into account the tillage effects on carbon losses through soil erosion.  相似文献   
35.
36.
During 1996-1998, 16 fruit bodies of different species and 204 soil samples down to 10 cm in the close vicinity of the fruit body sites were collected in a coniferous forest in the Ovruch region of Ukraine. The soil samples were sliced into 1 or 2 cm layers and the fungal mycelium was prepared from each of the layers. The 137Cs activity concentration was determined in both soil and mycelium. The mean weight of fungal mycelium was 13.8 mg g(-1) of soil in the upper 4 cm and 7.3 mg g(-1) when measured for the upper 10 cm. At the sites of Paxillus involutus and Sarcodon imbricatus, the mycelium was rather homogeneously distributed in the upper 10 cm and at sites of Xerocomus subtomentosus and Cantharellus cibarius, the mycelium was distributed mostly in the upper layers. The highest 137Cs activity concentrations were found in the upper layers of the soil profile. The 137Cs activity concentrations were usually higher in the fruit bodies compared with the mycelium, with ratios ranging from 0.1 to 66 and a mean of 9.9. The percentage of the total inventory of 137Cs in the soil found in the fungal mycelium ranged from 0.1 to 50%, with a mean value of 15%.  相似文献   
37.
Metallurgic industry is a source of serious environmental pollution related to the emission of heavy metals. Freshwater systems are focal points for pollution, acting as sinks for contaminants that may end up in fish and humans. The Pasvik watercourse in the border area between Finland, Norway and Russia is located in the vicinity of the Pechenganickel metallurgic enterprises, and the lower part of the watershed drains the Nikel smelters directly through Lake Kuetsjarvi. Heavy metal (Ni, Cu, Cd, Zn, Pb and Hg) concentrations in environment (water and sediments) and whitefish Coregonus lavaretus tissue (gills, liver, kidney and muscle) were contrasted between five lake localities situated along a spatial gradient of increasing distance (5-100 km) to the smelters. The heavy metal concentrations, in particular Ni, Cu and Cd, were highly elevated in Kuetsjarvi, but steeply declined with increasing distance to the smelters and were moderate or low in the other four localities. The study demonstrates that the majority of metal emissions and runoffs are deposited near the pollution source, and only moderate amounts of the heavy metal contaminants seem to be transported at further distances. Bioaccumulation of Hg occurred in all investigated tissues, and higher Hg concentrations in planktivorous versus benthivorous whitefish furthermore indicated that pelagic foraging is associated with higher levels of Hg biomagnification. Potential population ecology impacts of high heavy metal contaminations where mainly observed in whitefish in Kuetsjarvi, which showed depletions in growth rate, condition factor and size and age at maturation.  相似文献   
38.
Amid growing concern about the conservation of renewable natural resources, the process, extent and symptoms of their degradation are examined with specific reference to the Upper Pokhara Valley. Based on a household survey, field observations, informal deliberations and land use analysis, the results of this study reveal that forests and grazing land have been subject to increasing degradation caused by demographic, socioeconomic and institutional factors. The intensity of degradation varies by watershed. In particular, rainfed pakho land on steep slopes is under the severe threat of accelerating soil erosion, despite the construction of terraces. This calls for the formulation of a comprehensive natural resource conservation strategy which should be based on a framework comprising an integrated population control programme, planned land use changes and institutional reforms .  相似文献   
39.
40.
A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号