首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  国内免费   3篇
废物处理   3篇
环保管理   8篇
综合类   7篇
基础理论   4篇
污染及防治   10篇
评价与监测   3篇
社会与环境   6篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2011年   2篇
  2010年   7篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
31.
An integrated investigation on wastewater characterization and the environmental effects from the COGIDO pulp and paper mill in Bien Hoa Industrial Estate, Vietnam, a chlorine bleached soda integrated pulp and paper mill operating without a chemical recovery system, on the receiving water body was conducted during the rainy and dry seasons in 1993 and 1995. The pollution load from the mill was very high in terms of BOD, COD and SS (CODm: 58.7 t/d; BOD: 33.3 t/d and SS: 25.1 t/d). The effluent toxicity was determined using four toxicity tests: the green micro-alga, Selenastrum capricornutum, Microtox (marine bacteria: Photobacterium phosphoreum), the duckweed, Lemna aequinoctialis, and fish (silver barb: Puntius gonionotus, and Tilapia: Tilapia nilotica). Selenastrum capricornutum was the most sensitive among the tested organisms. The mill toxicity emission rate (TER) was as high as 338 610 (Selenastrum test). The bleaching-pulp and semi-chemical pulp plants which contributed the largest pollution load to the total COGIDO effluent, therefore, were targeted for abatement measures. Physico-chemical parameters as well as qualitative and quantitative aquatic organism composition for the river water were established. The BOD5 and COD values exceeded the potable surface water standard by a factor of 2 to 4. The species diversity and abundance of the phytoplankton, zooplankton and zoobenthos were found to be lower (20–40%) than that of unpolluted rivers in Vietnam, whereas pollution-indicator species increased up to four times during the dry season 1995.  相似文献   
32.
PM2.5 particulate matter has been collected on Teflon filters every Sunday and Wednesday at Hanoi, Vietnam for nearly eight years from April 2001 to December 2008. These filters have been analysed for over 21 different chemical species from hydrogen to lead by ion beam analysis techniques. This is the first long term PM2.5 dataset for this region. The average PM2.5 mass for the study period was (54 ± 33) μg m?3, well above the current US EPA health goal of 15 μg m?3. The average PM2.5 composition was found to be (29 ± 8)% ammonium sulfate, (8.9 ± 3.3)% soil, (28 ± 11)% organic matter, (0.6 ± 1.4)% salt and (9.2 ± 2.8)% black carbon. The remaining missing mass (25%) was mainly nitrates and absorbed water. Positive matrix factorisation techniques identified the major source contributions to the fine mass as automobiles and transport (40 ± 10)%, windblown soil (3.4 ± 2)%, secondary sulfates (7.8 ± 10)%, smoke from biomass burning (13 ± 6)%, ferrous and cement industries (19 ± 8)%, and coal combustion (17 ± 7)% during the 8 year study period.  相似文献   
33.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   
34.
Concentrations of arsenic and other trace elements in groundwater were examined at three villages (PT, POT and CHL) in the Kandal Province of Cambodia. Concentrations of arsenic in the groundwater ranged from 6.64 (in POT village) to 1543 microg/L (in PT village), with average and median concentrations of 552 and 353 microg/L, respectively. About 86% out of fifteen samples contained arsenic concentrations exceeding the WHO drinking water guidelines of 10 microg/L. Concentrations of arsenic (III) varied from 4 (in POT village) to 1334 microg/L (in PT village), with an average concentration of 470 microg/L. In addition, about 67%, 80% and 86% of the groundwater samples had higher concentrations for, respectively, barium, manganese and lead than the WHO drinking water guidelines. These results reveal that groundwater in Kandal Province is not only considerably contaminated with arsenic but also with barium, manganese and lead. A risk assessment study found that one sample (PT25) had a cumulative arsenic concentration (6758 mg) slightly higher than the threshold level (6750 mg) that could cause internal cancer in smelter workers with chronic exposure to arsenic from groundwater. High cumulative arsenic ingestion poses a health threat to the residents of Kandal Province.  相似文献   
35.
The potential impacts of climate change are varied and highly uncertain, and pose a significant challenge to agencies charged with managing environmental risks. This paper presents a comprehensive and structured Mental Modeling approach to elicit, organize and present relevant information from experts and stakeholders about the factors influencing environmental risk management in the face of climate change. We present and review an initiative undertaken by the United States Army Corps of Engineers (USACE) to characterize climate change challenges to USACE environmental risk management activities, and to identify gaps with respect to science, engineering, and organizational processes for addressing these challenges. By employing Mental Modeling, the research has characterized the influences of climate change on USACE environmental risk management, and aggregating recommendations from 28 experts. In addition, the study identifies the most important opportunities to improve organizational response to climate change, ranging from focused research and development of technical capabilities to broad paradigm shifts and systemic organizational improvements within the USACE environmental risk management programs. This study demonstrates that Mental Modeling is a useful tool for understanding complex problems, identifying gaps, and formulating strategies, and can be used by a multitude of organizations and agencies.  相似文献   
36.
Environmental Science and Pollution Research - Concentrations and congener profiles of seven di- to hexachlorinated benzenes (CBzs) were characterized in bottom ash and fly ash samples collected...  相似文献   
37.
In this study, classification trees were combined with the Water Framework Directive (WFD)-Explorer, a modular toolbox that supports integrated water management in a river basin to evaluate the impact of different restoration measures on river ecology. First, the WFD-Explorer toolbox analysed the effect of different restoration options on the abiotic river characteristics based on the water and substance balance embedded in the simulation environment. Based on these abiotic characteristics, the biological index Biological Monitoring Working Party for Vietnam was then predicted by classification trees that were trained on biological and abiotic data collected in the Du river basin in northern Vietnam. The ecological status of streams in the basin ranged from nearly pristine headwaters to severely impacted river stretches. Elimination of point sources from ore extraction and decentralised domestic wastewater treatment proved to be the most effective measures to improve the ecological condition of the Du river basin. The combination of the WFD-Explorer results with data-driven models enabled model application in a situation where expert knowledge was lacking. Consequently, this approach appeared promising for decision support in the context of river restoration and conservation management.  相似文献   
38.
This paper presents simulations of climate change impacts on water quality in the upstream portion of the Cau River Basin in the North of Vietnam. The integrated modeling system GIBSI was used to simulate hydrological processes, pollutant and sediment wash-off in the river basin, and pollutant transport and transformation in the river network. Three projections for climate change based on emission scenarios B1, B2, and A2 of IPCC Special Report on Emission Scenarios (SRES) were considered. By assuming that the input pollution sources and watershed configuration were constant, based on 2008 data, water quality in the river network was simulated up to the terminal year 2050. For each climate change scenario, patterns of precipitation in wet and dry year were considered. The change in annual and monthly trends for dissolved oxygen (DO), biochemical oxygen demand (BOD), and ammonium ions (NH4+) load and concentration for different portions of the watershed have been analyzed. The results of these simulations show that climate change has more impact on changing the seasonal water quality parameters than on altering the average annual load of the pollutants. The percent change and change pattern in water quality parameters are different for wet and dry year, and the changes in wet year are smaller than those in dry year.  相似文献   
39.
Phytoplankton diversity and abundance in estuarine systems are controlled by many factors. Salinity, turbidity, and inorganic nutrient concentrations and their respective ratios have all been proposed as principal factors that structure phytoplankton diversity and influence the emergence of potentially toxic species. Although much work has been conducted on temperate estuaries, less is known about how phytoplankton diversity is controlled in tropical, monsoonal systems that are subject to large, seasonal shifts in hydrology and to rapidly changing land use. Here, we present the results of an investigation into the factors controlling phytoplankton species composition and distribution in a tropical, monsoonal estuary (Bach Dang estuary, North Vietnam). A total of 245 taxa, 89 genera from six algal divisions were observed. Bacillariophyceae were the most diverse group contributing to 51.4 % of the microalgal assemblage, followed by Dinophyceae (29.8 %), Chlorophyceae (10.2 %), Cyanophyceae (3.7 %), Euglenophyceae (3.7 %) and Dictyochophyceae (1.2 %). The phytoplankton community was structured by inorganic nutrient ratios (DSi:DIP and DIN:DIP) as well as by salinity and turbidity. Evidence of a decrease in phytoplankton diversity concomitant with an increase in abundance and dominance of certain species (e.g., Skeletonema costatum) and the appearance of some potentially toxic species over the last two decades was also found. These changes in phytoplankton diversity are probably due to a combination of land use change resulting in changes in nutrient ratios and concentrations and global change as both rainfall and temperature have increased over the last two decades. It is therefore probable in the future that phytoplankton diversity will continue to change, potentially favoring the emergence of toxic species in this system.  相似文献   
40.
Do MH  Phan NH  Nguyen TD  Pham TT  Nguyen VK  Vu TT  Nguyen TK 《Chemosphere》2011,85(8):1269-1276
In the water treatment field, activated carbons (ACs) have wide applications in adsorptions. However, the applications are limited by difficulties encountered in separation and regeneration processes. Here, activated carbon/Fe3O4 nanoparticle composites, which combine the adsorption features of powdered activated carbon (PAC) with the magnetic and excellent catalytic properties of Fe3O4 nanoparticles, were fabricated by a modified impregnation method using HNO3 as the carbon modifying agent. The obtained composites were characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption isotherms and vibrating sample magnetometer. Their performance for methyl orange (MO) removal by adsorption was evaluated. The regeneration of the composite and PAC-HNO3 (powdered activated carbon modified by HNO3) adsorbed MO by hydrogen peroxide was investigated. The composites had a high specific surface area and porosity and a superparamagnetic property that shows they can be manipulated by an external magnetic field. Adsorption experiments showed that the MO sorption process on the composites followed pseudo-second order kinetic model and the adsorption isotherm date could be simulated with both the Freundlich and Langmuir models. The regeneration indicated that the presence of the Fe3O4 nanoparticles is important for a achieving high regeneration efficiency by hydrogen peroxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号