首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   3篇
  国内免费   7篇
安全科学   12篇
废物处理   12篇
环保管理   52篇
综合类   38篇
基础理论   62篇
环境理论   1篇
污染及防治   77篇
评价与监测   19篇
社会与环境   11篇
灾害及防治   2篇
  2023年   2篇
  2022年   3篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   8篇
  2013年   32篇
  2012年   10篇
  2011年   21篇
  2010年   7篇
  2009年   9篇
  2008年   13篇
  2007年   22篇
  2006年   14篇
  2005年   20篇
  2004年   6篇
  2003年   10篇
  2002年   13篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有286条查询结果,搜索用时 0 毫秒
141.
Control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in emissions and thermal residues from incinerators has been a cause of public concern for more than one decade. Recently, several studies showed that other persistent organic pollutants (POPs) such as coplanar polychlorinated biphenyls (co-PCBs) also have dioxin-like activity and are released from incinerators. Therefore, the present study was aimed at making a risk assessment about dioxin-like activity in extracts of thermal waste residues (e.g. combustion gas; fly ash, slag) from incineration and melting processes in Germany and Japan. For this purpose, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), coplanar polychlorinated biphenyls (co-PCBs), polychlorinated naphthalenes (PCNs) and polyaromatic hydrocarbons (PAHs) were analyzed by chemical analysis. Additionally, 2, 3, 7, 8-TCDD equivalents (EROD-TEQs) were determined by in vitro Micro-EROD bioassay using rat H4IIE hepatoma cells. EROD-TEQs could be correlated to I-TEQ values (from PCDD/Fs/co-PCBs) analyzed by chemical analysis resulting in a maximal sixfold higher estimate. Our study indicates minor influences of co-PCBs, PAHs and PCNs to the sum of dioxin-like toxicity in the extracts of thermal waste residues as determined here. Furthermore, we showed that the levels of dioxins and co-PCBs contained in slag from melting processes and bottom ashes from incineration processes were lower by 1-2 orders of magnitude than that in fly ash.  相似文献   
142.
A simple method for quantitative analyses of organic chlorine pesticides (OCPs) in environmental water samples such as rainwater, river water and seawater using activated carbon fiber filters (ACFF) is described. ACFF was used as adsorbent to collect the chemicals in water samples. The collection of OCPs was completed almost for one day by stirring the mixture of the sample and the ACFF chips at room temperature. The adsorbed OCPs on the ACFF could be extracted easily with toluene-ethanol (4:1) mixed solvent. The purified extract by a florisil column chromatograph was followed by the analysis using high-resolution gas chromatograph/high-resolution mass spectrometer. Recoveries of OCPs spiked to actual samples such as rainwater, river water and seawater samples were approximately more than 80%, and the coefficients of variations were within 10%. This method was applied to the actual samples and was confirmed to be applicable for monitoring sub-ng/l level OCPs in environmental water samples.  相似文献   
143.
The major objectives of this work were to operate and construct an autohydrogenotrophic reactor and estimate perchlorate degradation kinetics. The results show that autohydrogenotrophic bacteria were cultured in the reactor and capable of removing 3.6 mg/d of perchlorate in the presence of excess hydrogen (99% removal). The reactor was successful in treating the average influent perchlorate concentration of 532 microg/L to the level of 3 microg/L. A first-order relationship was obtained between the concentration of active biomass in the reactor and the hydraulic retention time for the given amount of substrate. During the kinetic loading study, perchlorate removal ranged from 100 to 50%. The kinetic rate of perchlorate degradation observed in this study was 1.62 hr(-1). The significant degradation of perchlorate in these samples indicates the ubiquity of perchlorate-reducing organisms. Additionally, nitrate was simultaneously removed during water treatment (greater than 90% removal). Because of the excess levels of hydrogen, simultaneous removal of nitrate was not believed to significantly affect perchlorate removal. The area of concern was the lack of complete control over biological treatment. The growth of sulfate-reducing organisms in the reactor negatively affected perchlorate removal efficiency. There were no significant effects observed on the dissolved organic carbon and total suspended solids concentration of the effluent, suggesting that the treatment did not produce a large amount of biomass washout.  相似文献   
144.
Liu S  Lim M  Fabris R  Chow C  Chiang K  Drikas M  Amal R 《Chemosphere》2008,72(2):263-271
The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV254 absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV254 absorbance. The THMFPs of samples were decreased to below 20 μg l−1 after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.  相似文献   
145.
Pine wilt disease (PWD) is caused by a non-native pest that has spread extensively throughout Japan. Previous research has indicated that most infected trees have died and the litter deposited has resulted in changes to stream-water chemistry, particularly increased nitrate (NO 3 ? ) concentrations. In this study, we divided stream nitrogen (N) export into N loss due to PWD and baseline N leakage without disturbance based on long-term monitoring. The annual N export was 110.0 mol N ha?1 year?1 in 1990 and 749.8 mol N ha?1 year?1 in 1997, and had decreased to 37.0 mol N ha?1 year?1 in 2005. N export under PWD influence was estimated to be 3697 mol N ha?1, and N loss due to PWD was 2810 mol N ha?1. N loss due to PWD was three times larger than baseline N leakage for the disturbed period. These changes in plant–herbivore relationships could affect N status in a forest ecosystem. So-called “semi-natural” disturbances related to non-native species invasion and increases of atmospheric N deposition caused by human activity will increase. Long-term monitoring studies of various aspects are necessary to offer insight into this ecosystem.  相似文献   
146.
We studied the leaching and dissipation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-s-triazine) and its two principal metabolites (desethylatrazine and desisopropylatrazine) for more than two years through soil profiles at five forestry sites across Australia (representing subtropical, temperate and Mediterranean climatic conditions with rainfall ranging from 780 to 1536 mm yr?1). Following atrazine applications at local label rates, soil cores were collected at regular intervals (up to depths of 90–150 cm), and the residues of the three compounds in soil were analysed in composite samples using liquid chromatography. Bromide was applied simultaneously with atrazine to follow the movement of the soil water. While bromide ion rapidly leached through the entire profile, in most cases the bulk of atrazine, desethylatrazine and desisopropylatrazine remained in the top 45 cm of the soil profile. However, a small fraction of residue moved deeper into the soil profile and at a subtropical site (Toolara) trace levels (ng L?1) of atrazine and one of its metabolites (DEA) were detected in perched groundwater located at a depth of 1.8 m. Data on the total residues of atrazine in soil profiles from all sites except the Tasmanian site fitted a first-order decay model. The half-life of atrazine in surface soils at the subtropical sites (Toolara and Imbil) ranged from 11 to 21 days. Four separate applications of atrazine at Toolara resulted in a narrow range of half-lives (16 ± 3.6 days), confirming relatively rapid dissipation of atrazine under subtropical conditions (Queensland). In contrast, a prominent biphasic pattern of initial rapid loss followed by very slow phase of degradation of atrazine was observed under the colder temperate climate of Highclere (Tasmania). The data showed that while its 50% (DT50) loss occurred relatively rapidly (36 days), more than 10% of herbicide residue was still detectable in the profile even a year after application (DT90 = 375 days). The rate of dissipation of atrazine at warm subtropical Queensland sites (Imbil and Toolara) was 2–3 times faster than sites located in colder climate of Tasmania. The marked contrast in DT50 values between subtropical and temperate sites suggest that climatic conditions (soil temperature) is one of the key factors affecting atrazine dissipation. At the Tasmanian site, the combination of leaching of the herbicide in subsoil and slower microbial activity at cooler temperatures would have caused a longer persistence of atrazine.  相似文献   
147.
The need for cross-disciplinary scientific inquiries that facilitate improved natural resource management outcomes through increased understanding of both the biophysical and human dimensions of management issues has been widely recognized. Despite this broad recognition, a number of obstacles and barriers still sometimes challenge the successful implementation of cross-disciplinary approaches. Improving understanding of these challenges and barriers will help address them and thereby foster appropriate and effective utilization of cross-disciplinary approaches to solve natural resource management challenges. This research uses a case study analysis of the United States National Estuarine Research Reserve System to improve understanding of the critical factors that influence practitioners’ decisions related to incorporating social science into their natural resource management work. The case study research is analyzed and evaluated within a Theory of Planned Behavior framework to (1) determine and describe the factors that predict practitioners’ intent to incorporate social science into their natural resource related activities and (2) recommend potential strategies for encouraging and enabling cross-disciplinary approaches to natural resource management. The results indicate that National Estuarine Research Reserve practitioners’ decisions related to incorporating social science are primarily influenced by (1) confidence in their own capability to incorporate social science into their work and (2) beliefs about whether the outcomes of incorporating social science into their work would be valuable or beneficial.  相似文献   
148.
149.
The airway irritation of a reaction mixture of R-(+)-limonene and ozone was evaluated by a mouse bioassay in which sensory irritation, bronchoconstriction and pulmonary irritation were measured. Significant sensory irritation (33% reduction of mean respiratory rate) was observed by dynamic exposure of the mice, during 30 min, to a ca. 16 s old reaction mixture of ozone and limonene. The initial concentrations were nominally 4 ppm O3 and 48 ppm limonene. After reaction, the residual O3 was <0.03 ppm. Conventional analytical chemical methods were used to measure the formation of readily identified and stable products. Besides the expected products, 1-methyl-4-acetylcyclohexene (AMCH), 3-isopropenyl-6-oxoheptanal (IPOH), formaldehyde and formic acid, autooxidation products of limonene and a series of compounds (i.e., acetone, acrolein and acetic acid), which may or may not be artefacts, were identified. Addition of the sensory irritation effects of the residual reactants and all the identified compounds could not explain the observed sensory irritation effect. This suggests that one or more strong airway irritants were formed. Since limonene is common in the indoor air, and ozone is infiltrated from outdoors and/or produced indoors (e.g., by photocopiers), such oxidation reactions may be relevant for indoor air quality.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号