首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   776篇
  免费   9篇
  国内免费   18篇
安全科学   22篇
废物处理   5篇
环保管理   64篇
综合类   292篇
基础理论   207篇
环境理论   1篇
污染及防治   160篇
评价与监测   22篇
社会与环境   24篇
灾害及防治   6篇
  2020年   5篇
  2018年   9篇
  2017年   7篇
  2016年   19篇
  2015年   14篇
  2014年   7篇
  2013年   34篇
  2012年   26篇
  2011年   35篇
  2010年   21篇
  2009年   26篇
  2008年   30篇
  2007年   36篇
  2006年   46篇
  2005年   25篇
  2004年   11篇
  2003年   17篇
  2002年   21篇
  2001年   14篇
  2000年   10篇
  1999年   29篇
  1998年   13篇
  1997年   15篇
  1996年   12篇
  1995年   8篇
  1994年   11篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1989年   9篇
  1987年   6篇
  1985年   6篇
  1984年   6篇
  1983年   9篇
  1982年   6篇
  1974年   6篇
  1969年   6篇
  1967年   8篇
  1966年   10篇
  1965年   8篇
  1964年   12篇
  1963年   7篇
  1961年   12篇
  1960年   10篇
  1958年   5篇
  1957年   10篇
  1956年   7篇
  1955年   8篇
  1953年   8篇
  1920年   5篇
排序方式: 共有803条查询结果,搜索用时 281 毫秒
641.
642.
Biogeochemical C and N cycles in urban soils   总被引:8,自引:0,他引:8  
The percentage of urban population is projected to increase drastically. In 2030, 50.7 to 86.7% of the total population in Africa and Northern America may live in urban areas, respectively. The effects of the attendant increases in urban land uses on biogeochemical C and N cycles are, however, largely unknown. Biogeochemical cycles in urban ecosystems are altered directly and indirectly by human activities. Direct effects include changes in the biological, chemical and physical soil properties and processes in urban soils. Indirect effects of urban environments on biogeochemical cycles may be attributed to the introductions of exotic plant and animal species and atmospheric deposition of pollutants. Urbanization may also affect the regional and global atmospheric climate by the urban heat island and pollution island effect. On the other hand, urban soils have the potential to store large amounts of soil organic carbon (SOC) and, thus, contribute to mitigating increases in atmospheric CO(2) concentrations. However, the amount of SOC stored in urban soils is highly variable in space and time, and depends among others on soil parent material and land use. The SOC pool in 0.3-m depth may range between 16 and 232 Mg ha(-1), and between 15 and 285 Mg ha(-1) in 1-m depth. Thus, depending on the soil replaced or disturbed, urban soils may have higher or lower SOC pools, but very little is known. This review provides an overview of the biogeochemical cycling of C and N in urban soils, with a focus on the effects of urban land use and management on soil organic matter (SOM). In view of the increase in atmospheric CO(2) and reactive N concentrations as a result of urbanization, urban land use planning must also include strategies to sequester C in soil, and also enhance the N sink in urban soils and vegetation. This will strengthen soil ecological functions such as retention of nutrients, hazardous compounds and water, and also improve urban ecosystem services by promoting soil fertility.  相似文献   
643.
We present a methane (CH4) budget for the area of the Baiyinxile Livestock Farm, which comprises approximately 1/3 of the Xilin river catchment in central Inner Mongolia, P.R. China. The budget calculations comprise the contributions of natural sources and sinks as well as sources related to the main land-use in this region (non-nomadic pastoralism) during the growing season (May–September). We identified as important CH4 sources floodplains (mean 1.55 ± 0.97 mg CH4–C m?2 h?1) and domestic ruminants, which are mainly sheep in this area. Within the floodplain significant differences between investigated positions were detected, whereby only positions close-by the river or bayous emitted large amounts of CH4 (mean up to 6.21 ± 1.83 mg CH4–C m?2 h?1). Further CH4 sources were sheepfolds (0.08–0.91 mg CH4–C m?2 h?1) and pasture faeces (1.34 ± 0.22 mg CH4–C g?1 faeces dry weight), but they did not play a significant role for the CH4 budget. In contrast, dung heaps were not a net source of CH4 (0.0 ± 0.2 for an old and 0.0 ± 0.3 μg CH4–C kg?1 h?1 for a new dung heap). Trace gas measurements along two landscape transects (volcano, hill slope) revealed expectedly a mean CH4 uptake (volcano: 76.5 ± 4.3; hill: 28.3 ± 5.3 μg CH4–C m?2 h?1), which is typical for the aerobic soils in this and other steppe ecosystems. The observed fluxes were rarely influenced by topography.The CH4 emissions from the floodplain and the sheep were not compensated by the CH4 oxidation of aerobic steppe soils and thus, this managed semi-arid grassland did not serve as a terrestrial sink, but as a source for this globally important greenhouse gas. The source strength amounted to 1.5–3.6 kg CH4–C ha?1 during the growing season, corresponding to 3.5–8.7 kg C ha?1 yr?1.  相似文献   
644.
Release of PCDD and PCDF from biomass combustion such as forest and agricultural crop fires has been nominated as an important source for these chemicals despite minimal characterisation. Available emission factors that have been experimentally determined in laboratory and field experiments vary by several orders of magnitude from <0.5 μg TEQ (t fuel consumed)−1 to >100 μg TEQ (t fuel consumed)−1. The aim of this study was to evaluate the effect of experimental methods on the emission factor.A portable field sampler was used to measure PCDD/PCDF emissions from forest fires and the same fuel when burnt over a brick hearth to eliminate potential soil effects. A laboratory burn facility was used to sample emissions from the same fuels. There was very good agreement in emission factors to air (EFAir) for forest fuel (Duke Forest, NC) of 0.52 (range: 0.40-0.79), 0.59 (range: 0.18-1.2) and 0.75 (range: 0.27-1.2) μg TEQWHO2005 (t fuel consumed)−1 for the in-field, over a brick hearth, and burn facility experiments, respectively. Similarly, experiments with sugarcane showed very good agreement with EFAir of 1.1 (range: 0.40-2.2), 1.5 (range: 0.84-2.2) and 1.7 (range: 0.34-4.4) μg TEQ (t fuel consumed)−1 for in-field, over a brick hearth, open field and burn facility experiments respectively. Field sampling and laboratory simulations were in good agreement, and no significant changes in emissions of PCDD/PCDF could be attributed to fuel storage and transport to laboratory test facilities.  相似文献   
645.
Synthetic nanoparticles have already been detected in the aquatic environment. Therefore, knowledge on their biodegradability is of utmost importance for risk assessment but such information is currently not available. Therefore, the biodegradability of fullerenes, single, double, multi-walled as well as COOH functionalized carbon nanotubes and cellulose and starch nanocrystals in aqueous environment has been investigated according to OECD standards. The biodegradability of starch and cellulose nanoparticles was also compared with the biodegradability of their macroscopic counterparts. Fullerenes and all carbon nanotubes did not biodegrade at all, while starch and cellulose nanoparticles biodegrade to similar levels as their macroscopic counterparts. However, neither comfortably met the criterion for ready biodegradability (60% after 28 days). The cellulose and starch nanoparticles were also found to degrade faster than their macroscopic counterparts due to their higher surface area. These findings are the first report of biodegradability of organic nanoparticles in the aquatic environment, an important accumulation environment for manmade compounds.  相似文献   
646.
Estimating the extent of intraspecific variation in sensitivity to contaminant exposure is important in order to explain variation in the outcome of toxicity tests and to predict the effects of chemical stress on natural populations of plants and animals. However, only few studies provide evident data concerning intraspecific variation in life-history traits caused by a differential response to chemical stress. In this study, we compared the life-history response of six laboratory strains of the midge Chironomus riparius to cadmium exposure in a full life-cycle assay. In addition, the level of genetic variation in all strains was measured at five variable microsatellite loci. Several significant differences in life-history traits among the strains were observed in controls and cadmium treatments. The extent of variation among strains was largest at moderate cadmium concentration (0.42 mg Cd/kg dw). At increased Cd concentrations all strains showed similar levels of high mortality and reduced reproductive success. All strains exhibited considerable levels of genetic impoverishment compared to field populations. Strains with low genetic variation showed reduced fitness in the controls and were more susceptible to Cd exposure. For instance, no reproductive success in the lowest Cd treatment was observed for the strain with the lowest level of genetic diversity. In contrast, this Cd concentration had no negative effects on life-history traits of more variable strains. These results confirm recent findings, that inbreeding and reduced genetic variation influence the reaction of populations towards environmental stress. In addition, we show that the level of genetic variation and inbreeding directly influences the outcome of toxicity tests and contributes to the lack of reproducibility of test results among laboratories.  相似文献   
647.
Urea-formaldehyde resin bonded partlcleboard, medium density fiberboard and plywood paneling are used as flooring, wall paneling, for cabinet work and in furniture, and are present In almost every office, home and public building. If large quantities of these products are used In poorly ventilated spaces, high manufacturing quality control is necessary to avoid problems of latent formaldehyde release. Indoor air formaldehyde concentrations depend on the nature of the product, the product surface to air volume (loading) factor, temperature, humidity, age and product emission rates. Standard test methods are now available for measuring product emission rates that make It possible to predict the performance of UF-bonded pressed wood materials If use conditions and environmental parameters are known. Recent modifications In adhesive and board manufacturing parameters have made It possible to reduce formaldehyde emission significantly, and UF-bonded wood products are now capable of meeting indoor air quality standard levels of 0.1 ppm under almost all customary loading conditions.  相似文献   
648.
Abstract

Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 μg m?3 and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head?1 day?1, showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   
649.
Winfried Schröder  Stefan Nickel  Simon Schönrock  Michaela Meyer  Werner Wosniok  Harry Harmens  Marina V. Frontasyeva  Renate Alber  Julia Aleksiayenak  Lambe Barandovski  Alejo Carballeira  Helena Danielsson  Ludwig de Temmermann  Barbara Godzik  Zvonka Jeran  Gunilla Pihl Karlsson  Pranvera Lazo  Sebastien Leblond  Antti-Jussi Lindroos  Siiri Liiv  Sigurður H. Magnússon  Blanka Mankovska  Javier Martínez-Abaigar  Juha Piispanen  Jarmo Poikolainen  Ion V. Popescu  Flora Qarri  Jesus Miguel Santamaria  Mitja Skudnik  Zdravko Špirić  Trajce Stafilov  Eiliv Steinnes  Claudia Stihi  Lotti Thöni  Hilde Thelle Uggerud  Harald G. Zechmeister 《Environmental science and pollution research international》2016,23(11):10457-10476
For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.  相似文献   
650.
Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L?1, respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号