首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   3篇
  国内免费   18篇
安全科学   13篇
废物处理   7篇
环保管理   38篇
综合类   186篇
基础理论   156篇
污染及防治   123篇
评价与监测   19篇
社会与环境   21篇
  2021年   3篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   16篇
  2015年   9篇
  2014年   6篇
  2013年   26篇
  2012年   16篇
  2011年   30篇
  2010年   16篇
  2009年   20篇
  2008年   21篇
  2007年   26篇
  2006年   38篇
  2005年   22篇
  2004年   14篇
  2003年   18篇
  2002年   14篇
  2001年   10篇
  2000年   7篇
  1999年   19篇
  1998年   10篇
  1997年   10篇
  1996年   12篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1991年   5篇
  1989年   5篇
  1987年   4篇
  1985年   4篇
  1983年   6篇
  1980年   3篇
  1979年   3篇
  1969年   3篇
  1966年   7篇
  1965年   4篇
  1964年   9篇
  1963年   7篇
  1961年   6篇
  1960年   6篇
  1959年   4篇
  1958年   3篇
  1957年   8篇
  1956年   3篇
  1955年   5篇
  1954年   4篇
  1953年   7篇
  1950年   3篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
151.
This paper considers the two-dimensional saturated and unsaturated flow of water through inclined porous media, namely a waste dump or hill slope. Since the partial differential equation governing this water flow transforms from being parabolic to elliptic as the water flow varies from unsaturated to saturated, an iterative, finite differencing scheme is used to develop a numerical solution. The model can be used to investigate the effects that hill slope angle, depth of soil cover and hilltop width have on water accumulation in the dump and the time required for saturation to occur at different areas in the dump domain. The accuracy and reliability of the computer based solution is tested for two different boundary conditions – (1) no flow on all boundaries (i.e., the internal redistribution of soil moisture to steady state) and (2) a constant rainfall flux on the dump surface. Numerical studies then show the effects of changing the hill slope angle, depth of layer, and dump geometry on the flow characteristics in the dump.  相似文献   
152.
Problems which might be caused by the release of transgenic organisms are discussed from the viewpoint of genetics, population genetics and ecology. On this background, the differences between "classical" methods to recombine genetic information and the more recent ones of gene engineering are pointed out and the predictability of gene interactions is discussed. Moreover, the possibility of uncontrolled reproduction of released transgenic organisms and the distribution of manipulated genes are demonstrated on the basis of our knowledge on nontransgenic organisms. Finally, the problems of risk assessment are emphasized.  相似文献   
153.
A thermodynamically based method to quantify true sorption hysteresis   总被引:8,自引:0,他引:8  
Sorption of organic chemicals to soils and sediments often shows true hysteresis (i.e., nonsingularity of the sorption-desorption isotherm not attributable to known experimental artifacts). Since true sorption hysteresis is fundamentally important to contaminant fate, a way to quantify it is desirable. Previously proposed indices of hysteresis are empirical and usually depend on the isotherm model. True sorption hysteresis to synthetic and natural organic solids has been attributed to irreversible alteration of the solid during the sorption-desorption cycle. Given this mechanism, we propose the Thermodynamic Index of Irreversibility (TII) for quantifying hysteresis in soils where natural organic matter dominates the sorption process. The TII is based on the difference in free energy between the real desorption state and the hypothetical fully reversible state. The index is 0 for completely reversible systems and approaches 1 as the process tends toward complete irreversibility. It does not require any assumptions about the physical properties or molecular composition of the solid, and it does not depend on a specific equilibrium model. A sensitivity analysis of measurement errors provides general recommendations for the setup of sorption-desorption experiments. The TII was applied to sorption of 1,4-dichlorobenzene (DCB) to two high-organic soils, Pahokee peat (PP) and Amherst soil (AS), and a low-rank coal reference material, Beulah-Zap lignite (BZL). Common artificial causes of hysteresis were eliminated. Hysteresis was significant in the peat and the coal. The TII was clearly concentration dependent for both solids; it decreased with concentration for the peat, but increased with concentration for the coal. The TII allows quantification of hysteresis as a function of sorbate-sorbent combination, concentration, time, and other variables.  相似文献   
154.
This paper summarizes some personal impressions of the 7th conference of the International Complex Systems Society, co-organized with “Future Earth”, held in Stockholm on August 24–26, 2017. The main point is that it is urgent and important to consider the sustainability conundrum as long-term, society-driven one, and to place societal dynamics at the core of how we, as a global society, came to this point, how ongoing dynamics are driving us towards a tipping point, and which role the Information and Communication Technology revolution plays in that process. A much wider involvement of the social sciences is essential. This also requires major changes in our thinking about sustainability—we need to develop an approach in which change is the natural state of affairs and societies attempt to impose stability on the dynamics involved. We need to focus on learning from the past, about the present, but above all for the future. And we need to shift from an entity-focused approach to a relational one, which pays more attention to contexts and networks. Other issues raised by such a shift in our thinking are about the role of science, the adoption of complex systems approaches and a few others that the paper points to.  相似文献   
155.
Considering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research attention and several large monitoring campaigns have been carried out to assess estrogenic contamination in the aquatic environment. The introduction of novel in vitro bioassays enables researchers to study if – and to what extent – water bodies are under the impact of less-studied (synthetic) hormone active compounds. The aim of the present study was to carry out an assessment on the presence and extent of glucocorticogenic activity in Dutch surface waters that serve as sources for drinking water production. The results show glucocorticogenic activity in the range of <LOD – 2.4 ng dexamethasone equivalents L−1 (dex EQs) in four out of eight surface waters. An exploratory time-series study to obtain a more complete picture of the yearly average of fluctuating glucocorticogenic activities at two sample locations demonstrated glucocorticogenic activities ranging between <LOD – 2.7 ng dex EQs L−1. Although immediate human health effects are unlikely, the environmental presence of glucocorticogenic compounds in the ng L−1 range compels further environmental research and assessment.  相似文献   
156.
157.
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency.Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases.For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables.The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.  相似文献   
158.
Active pharmaceutical ingredients as well as personal care products are detected in increasing prevalence in different environmental compartments such as surface water, groundwater and soil. Still little is known about the environmental fate of these substances. The type II antidiabetic drug Metformin has already been detected in different surface waters worldwide, but concentrations were significantly lower than the corresponding predicted environmental concentration (PEC). In human and mammal metabolism so far no metabolites of Metformin have been identified, so the expected environmental concentrations should be very high.To assess the aerobic biodegradability of Metformin and the possible formation of degradation products, three Organisation of Economic Cooperation and Development (OECD) test series were performed in the present study.In the Closed Bottle test (OECD 301 D), a screening test that simulates the conditions of an environmental surface water compartment, Metformin was classified as not readily biodegradable (no biodegradation). In the Manometric Respiratory test (OEDC 301 F) working with high bacterial density, Metformin was biodegraded in one of three test bottles to 48.7% and in the toxicity control bottle to 57.5%. In the Zahn-Wellens test (OECD 302 B) using activated sludge, Metformin was biodegraded in both test vessels to an extent of 51.3% and 49.9%, respectively.Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MS(n)) showed in the tests vessels were biodegradation was observed full elimination of Metformin and revealed Guanylurea (Amidinourea, Dicyandiamidine) as single and stable aerobic bacterial degradation product. In another Manometric Respiratory test Guanylurea showed no more transformation. Photodegradation of Guanylurea was also negative.A first screening in one of the greatest sewage treatment plant in southern Germany found Metformin with high concentrations (56.8 μg L−1) in the influent (PEC = 79.8 μg L−1), but effluent concentration was much lower (0.76 μg L−1) whereas Guanylurea was detected in a low influent and high effluent concentration (1.86 μg L−1). These data support the experimental findings in the OECD tests and analytical results of other studies, that Metformin under aerobic conditions can bacterially be degraded to the stable dead-end transformation product Guanylurea.  相似文献   
159.
Water is a critical issue in China for a variety of reasons. China is poor of water resources with 2300m(3) of per capita availability, which is less than 13 of the world average. This is exacerbated by regional differences; e.g. North China's water availability is only about 271m(3) of per capita value, which is only 125 of the world's average. Furthermore, pollution contributes to water scarcity and is a major source for diseases, particularly for the poor. The Ministry of Hydrology [1997. China's Regional Water Bullets. Water Resource and Hydro-power Publishing House, Beijing, China] reports that about 65-80% of rivers in North China no longer support any economic activities. Previous studies have emphasized the amount of water withdrawn but rarely take water quality into consideration. The quality of the return flows usually changes; the water quality being lower than the water flows that entered the production process initially. It is especially important to measure the impacts of wastewater to the hydro-ecosystem. Thus, water consumption should not only account for the amount of water inputs but also the amount of water contaminated in the hydro-ecosystem by the discharged wastewater. In this paper we present a new accounting and analytical approach based on economic input-output modelling combined with a mass balanced hydrological model that links interactions in the economic system with interactions in the hydrological system. We thus follow the tradition of integrated economic-ecologic input-output modelling. Our hydro-economic accounting framework and analysis tool allows tracking water consumption on the input side, water pollution leaving the economic system and water flows passing through the hydrological system thus enabling us to deal with water resources of different qualities. Following this method, the results illustrate that North China requires 96% of its annual available water, including both water inputs for the economy and contaminated water that is ineligible for any uses.  相似文献   
160.
In recent years pharmaceuticals and personal care products have been detected in increasing concentrations in hospital effluents, sewage treatment plants (STP) as well as in different environmental compartments such as surface water, groundwater and soil. Little is known about the elimination of these substances during sewage treatment or about the formation of potential metabolites in the environment caused by bacterial biotransformation. To assess the biodegradability of the popular cardiovascular drug verapamil and the possible formation of potential microbial degradation products, two tests from the OECD series were used in the present study: the widely used Closed Bottle test (OECD 301 D) and the modified Zahn-Wellens test (OECD 302 B). In the Closed Bottle test, a screening test that simulates the conditions of an environmental surface water compartment, no biological degradation was observed for verapamil at concentrations of 2.33mgl(-1). In the Zahn-Wellens test, a test for inherent biodegradability which allows evaluation of aerobic degradation at high bacterial density, only a partial biological degradation was found. Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MSn) revealed 2-(3,4-dimethoxyphenyl)-2-isopropyl-5-(methylamino)pentane nitrile, already known as D617 (Knoll nomenclature), a metabolite of mammalian metabolism, which is the major degradation product and dead-end transformation product of aerobic degradation of verapamil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号