首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8992篇
  免费   422篇
  国内免费   3251篇
安全科学   608篇
废物处理   550篇
环保管理   665篇
综合类   4737篇
基础理论   1503篇
污染及防治   3486篇
评价与监测   380篇
社会与环境   378篇
灾害及防治   358篇
  2024年   19篇
  2023年   166篇
  2022年   464篇
  2021年   390篇
  2020年   304篇
  2019年   310篇
  2018年   311篇
  2017年   402篇
  2016年   483篇
  2015年   522篇
  2014年   661篇
  2013年   897篇
  2012年   746篇
  2011年   761篇
  2010年   596篇
  2009年   525篇
  2008年   639篇
  2007年   505篇
  2006年   504篇
  2005年   354篇
  2004年   275篇
  2003年   329篇
  2002年   309篇
  2001年   232篇
  2000年   276篇
  1999年   288篇
  1998年   230篇
  1997年   222篇
  1996年   193篇
  1995年   153篇
  1994年   118篇
  1993年   118篇
  1992年   108篇
  1991年   84篇
  1990年   34篇
  1989年   34篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   10篇
  1984年   6篇
  1983年   4篇
  1982年   9篇
  1981年   6篇
  1979年   2篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
Environmental Science and Pollution Research - Phytoremediation coupled with crop rotation (PCC) is a feasible strategy for remediation of contaminated soil without interrupting crop production....  相似文献   
162.

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  相似文献   
163.
This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.  相似文献   
164.
It is well known that the dissolution of goethite plays an important role in catalyzing the oxidation of organic chemicals. Therefore, this study investigates how surface dissolution of goethite affects 2-chlorophenol oxidation in the goethite/H2O2 process. Experimental results indicate that ligand and reductant can enhance the dissolution rate of goethite, which is surface-controlled. Our results further indicate 2-chlorophenol degradation depends on goethite concentration. In addition, the oxidation rate of 2-CP is correlated with reductive dissolution rate at various dosages of goethite. Moreover, the oxidation mechanism of 2-CP is also a surface-controlled reaction. A mechanism proposed herein indicates that, in addition to the contaminant, its intermediate species affect the oxidation rate as well.  相似文献   
165.
As a primary factor responsible for lake eutrophication, a deeper understanding of the phosphorus (P) composition and its turnover in sediment is urgently needed. In this study, P species in surface sediments from a Chinese large eutrophic lake (Lake Taihu) were characterized by traditional fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy, and their contributions to the overlying water were also discussed. Fractionation results show that NaOH-P predominated in the algal-dominated zone, accounting for 60.1% to total P in Zhushan Bay. Whereas, refractory fractions including HCl-P and residual-P were the main P burial phases in the macrophyte-dominated zone, the center and lakeshore. Recovery rates of the total P and organic P were greatly improved by using a modified single-step extraction of NaOH-EDTA, ranging from 22.6 to 66.1% and from 15.0 to 54.0%. Ortho-P, monoester-P, and pyro-P are identified as the major P components in the NaOH-EDTA extracts by 31P NMR analysis. Trace amount of DNA-P appeared only in sediments from algal- and macrophyte-dominated zones, ascribing to its biological origin. The relative content of ortho-P is the highest in the algal-dominated zone, while the biogenic P including ester-P and pyro-P is the highest in the macrophyte-dominated zone. Moreover, ortho-P and pyro-P correlated positively with TP and chlorophyll a in the overlying water, whereas only significant relationships were found between monoester-P, biogenic P, and chlorophyll a. These discrepancies imply that inorganic P, mainly ortho-P, plays a vital role in sustaining the trophic level of water body and algal bloom, while biogenic P makes a minor contribution to phytoplankton growth. This conclusion was supported by the results of high proportion of biogenic P in algae, aquatic macrophytes, and suspended particulate from the published literature. This study has significant implication for better understanding of the biogeochemical cycling of endogenous P and its role in affecting lake eutrophication.  相似文献   
166.
以“grafting to”法制备的氧化石墨烯/聚酰胺-胺(GO/PAMAMs)作为吸附剂,研究了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附行为,考察了溶液pH值、吸附时间、初始离子浓度及吸附剂用量等因素对吸附过程的影响,探讨了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附机理。研究表明:GO/PAMAMs对Cu(Ⅱ)的吸附最佳pH值是5.0,Cd(Ⅱ)的最佳pH值为5.5;Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附过程符合Lagergren准二级动力学模型,等温吸附过程遵循Langmuir模型;热力学研究表明Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的吸附是自发进行的吸热过程,且属于物理吸附。  相似文献   
167.
Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts   总被引:7,自引:0,他引:7  
Liu Y  Chen X  Li J  Burda C 《Chemosphere》2005,61(1):11-18
This study examined the photocatalytic degradation of three azo dyes, acid orange 7 (AO7), procion red MX-5B (MX-5B) and reactive black 5 (RB5) using a new type of nitrogen-doped TiO2 nanocrystals. These newly developed doped titania nanocatalysts demonstrated high reactivity under visible light (lambda>390 nm), allowing more efficient usage of solar light. The doped titania were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Experiments were conducted to compare the photocatalytic activities of nitrogen-doped TiO2 nanocatalysts and commercially available Degussa P25 powder using both UV illumination and solar light. It is shown that nitrogen-doped TiO2 after calcination had the highest photocatalytic activity among all three catalysts tested, with 95% of AO7 decolorized in 1 h under UV illumination. The doped TiO2 also exhibited substantial photocatalytic activity under direct sunlight irradiation, with 70% of the dye color removed in 1h and complete decolorization within 3 h. Degussa P25 did not cause detectable dye decolorization under identical experimental conditions using solar light. The decrease of total organic carbon (TOC) and evolution of inorganic sulfate (SO4(2-)) ions in dye solutions were measured to monitor the dye mineralization process.  相似文献   
168.
Chen L  Ran Y  Xing B  Mai B  He J  Wei X  Fu J  Sheng G 《Chemosphere》2005,60(7):879-890
We investigated contents, distribution and possible sources of PAHs and organochlorine pesticides (Ops) in 43 surface and subsurface soils around the urban Guangzhou where variable kinds of vegetables are grown. The results indicate that the contents of PAHs (16 US EPA priority PAHs) range from 42 to 3077 microg/kg and the pollution extent is classified as a moderate level in comparison with other investigations and soil quality standards. The ratios of methylphenanthrenes to phenanthrene(MP/P), anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indeno[1,2,3-cd]pyrene to indeno[1,2,3-cd]pyrene plus benzo[ghi]perylene (In/In+BP) suggest that the sources of PAHs in the soil samples are mixed with a dominant contribution from petroleum and combustion of fossil fuel. The correlation analysis shows that the PAHs contents are significantly related to total organic carbon contents (TOC) (R2=0.75) and black carbon contents (BC) (R2=0.62) in the soil samples. Dichlorodiphenyltrichloroethane and metabolites (DDTs) and hexachlorocyclohexanes and metabolites (HCHs) account largely for the contaminants of OPs. The concentrations of DDTs range from 3.58 to 831 microg/kg and the ratios for DDT/(DDD+DDE) are higher than 2 in some soil samples, suggesting that DDT contamination still exists and may be caused by its persistence in soils and/or impurity in the pesticide dicofol. The concentrations of HCHs are 0.19-42.3 microg/kg.  相似文献   
169.
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   
170.
白腐菌应用于堆肥处理含木质素废物的研究   总被引:1,自引:0,他引:1  
白腐菌对木质素具有较强的降解能力。通过在含大量木质素的模拟垃圾堆肥中采取添加白腐菌菌剂与不添加该菌剂2组实验对比,在相同堆肥处理条件下,接种菌剂的堆肥中木质素总量由274988mg降至15438mg,降解率达4386%,远高于未接种菌剂的堆肥中木质素的降解率,表明白腐菌可有效用于含木质素废弃物的堆肥处理,并有望于加速堆肥腐熟,提高堆肥效率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号