首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   8篇
  国内免费   1篇
安全科学   7篇
废物处理   16篇
环保管理   44篇
综合类   232篇
基础理论   43篇
污染及防治   72篇
评价与监测   16篇
社会与环境   5篇
  2020年   4篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2014年   5篇
  2013年   18篇
  2012年   10篇
  2011年   16篇
  2010年   12篇
  2009年   4篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2000年   7篇
  1999年   4篇
  1996年   4篇
  1993年   4篇
  1992年   5篇
  1983年   5篇
  1981年   4篇
  1977年   6篇
  1965年   8篇
  1963年   4篇
  1962年   7篇
  1961年   5篇
  1960年   6篇
  1959年   7篇
  1958年   4篇
  1957年   12篇
  1956年   7篇
  1955年   8篇
  1954年   7篇
  1952年   5篇
  1941年   7篇
  1940年   8篇
  1939年   10篇
  1938年   4篇
  1937年   8篇
  1936年   5篇
  1935年   11篇
  1934年   7篇
  1931年   5篇
  1929年   4篇
  1928年   4篇
  1927年   4篇
  1926年   5篇
  1924年   3篇
排序方式: 共有435条查询结果,搜索用时 140 毫秒
351.
Abstract: Although the term ``pebble count'' is in widespread use, there is no standardized methodology used for the field application of this procedure. Each pebble count analysis is the product of several methodological choices, any of which are capable of influencing the final result. Because there are virtually countless variations on pebble count protocols, the question of how their results differ when applied to the same study reach is becoming increasingly important. This study compared three pebble count protocols: the reach‐averaged Environmental Monitoring and Assessment Program (EMAP) protocol named after the EMAP developed by the Environmental Protection Agency, the habitat‐unit specific U.S. Forest Service’s PACFISH/INFISH Biological Opinion (PIBO) Effectiveness Monitoring Program protocol, and a data‐intensive method developed by the authors named Sampling Frame and Template (SFT). When applied to the same study reaches, particle‐size distributions varied among the three pebble count protocols because of differences in sample locations within a stream reach and along a transect, in particle selection, and particle‐size determination. The EMAP protocol yielded considerably finer, and the PIBO protocol considerably coarser distributions than the SFT protocol in the pool‐riffle study streams, suggesting that the data cannot be used interchangeably. Approximately half of the difference was due to sampling at different areas within the study reach (i.e., wetted width, riffles, and bankfull width) and at different locations within a transect. The other half was attributed to using different methods for particle selection from the bed, particle‐size determination, and the use of wide, nonstandard size classes. Most of the differences in sampling outcomes could be eliminated by using simple field tools, by collecting a larger sample size, and by systematically sampling the entire bankfull channel and all geomorphic units within the reach.  相似文献   
352.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   
353.
Plasma gasification is an innovative technology for transforming high calorific waste streams into a valuable synthesis gas and a vitrified slag by means of a thermal plasma. A test program has been set up to evaluate the feasibility of plasma gasification and the impact of this process on the environment. RDF (refuse derived fuel) from carpet and textile waste was selected as feed material for semi-pilot gasification tests. The aim of the tests was: (1) to evaluate the technical feasibility of making a stable synthesis gas; (2) to characterize the composition of this synthesis gas; (3) to define a suitable after-treatment configuration for purification of the syngas and (4) to characterize the stability of the slag, i.e., its resistance to leaching for use as a secondary building material. The tests illustrate that plasma gasification can result in a suitable syngas quality and a slag, characterized by an acceptable leachability. Based on the test results, a further scale-up of this technology will be prepared and validation tests run.  相似文献   
354.
Population viability analysis (PVA) is a powerful conservation tool, but it remains impractical for many species, particularly species with multiple, broadly distributed populations for which collecting suitable data can be challenging. A recently developed method of multiple-population viability analysis (MPVA), however, addresses many limitations of traditional PVA. We built on previous development of MPVA for Lahontan cutthroat trout (LCT) (Oncorhynchus clarkii henshawi), a species listed under the U.S. Endangered Species Act, that is distributed broadly across habitat fragments in the Great Basin (U.S.A.). We simulated potential management scenarios and assessed their effects on population sizes and extinction risks in 211 streams, where LCT exist or may be reintroduced. Conservation populations (those managed for recovery) tended to have lower extinction risks than nonconservation populations (mean = 19.8% vs. 52.7%), but not always. Active management or reprioritization may be warranted in some cases. Eliminating non-native trout had a strong positive effect on overall carrying capacities for LCT populations but often did not translate into lower extinction risks unless simulations also reduced associated stochasticity (to the mean for populations without non-native trout). Sixty fish or 5–10 fish/km was the minimum reintroduction number and density, respectively, that provided near-maximum reintroduction success. This modeling framework provided crucial insights and empirical justification for conservation planning and specific adaptive management actions for this threatened species. More broadly, MPVA is applicable to a wide range of species exhibiting geographic rarity and limited availability of abundance data and greatly extends the potential use of empirical PVA for conservation assessment and planning.  相似文献   
355.
This article provides a case study of how green and sustainable remediation (GSR) concepts (including, but not limited to, worker risk) can be incorporated into the existing National Contingency Plan (NCP)/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedy selection framework. The occupational risks of worker fatalities and injuries associated with two site remediation alternatives were calculated and compared. The results demonstrated that the increased worker risks associated with one of the remedy alternatives rendered it inferior based on the NCP “Balancing Criteria” of short‐term effectiveness. This type of approach is implementable at many sites by leveraging readily available information at the remedy selection stage using published methods and data sources. © 2014 Wiley Periodicals, Inc.  相似文献   
356.
Like many coastal zones and estuaries, the Chesapeake Bay has been severely degraded by cultural eutrophication. Rising implementation costs and difficulty achieving nutrient reduction goals associated with point and nonpoint sources suggests that approaches supplemental to source reductions may prove useful in the future. Enhanced oyster aquaculture has been suggested as one potential policy initiative to help rid the Bay waters of excess nutrients via harvest of bioassimilated nutrients. To assess this potential, total nitrogen (TN), total phosphorous (TP), and total carbon (TC) content were measured in oyster tissue and shell at two floating-raft cultivation sites in the Chesapeake Bay. Models were developed based on the common market measurement of total length (TL) for aquacultured oysters, which was strongly correlated to the TN (R2 = 0.76), TP (R2 = 0.78), and TC (R2 = 0.76) content per oyster tissue and shell. These models provide resource managers with a tool to quantify net nutrient removal. Based on model estimates, 10(6) harvest-sized oysters (76 mm TL) remove 132 kg TN, 19 kg TP, and 3823 kg TC. In terms of nutrients removed per unit area, oyster harvest is an effective means of nutrient removal compared with other nonpoint source reduction strategies. At a density of 286 oysters m(-2), assuming no mortality, harvest size nutrient removal rates can be as high as 378 kg TN ha(-1), 54 kg TP ha(-1), and 10,934 kg TC ha(-1) for 76-mm oysters. Removing 1 t N from the Bay would require harvesting 7.7 million 76-mm TL cultivated oysters.  相似文献   
357.
Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.  相似文献   
358.
The net effects of soil biota on exotic invaders can be variable, in part, because net effects are produced by many interacting mutualists and antagonists. Here we compared mutualistic and antagonistic biota in soils collected in the native, expanded, and invasive range of the black locust tree, Robinia pseudoacacia. Robinia formed nodules in all soils with a broad phylogenetic range of N-fixing bacteria, and leaf N did not differ among the different sources of soil. This suggests that the global expansion of Robinia was not limited by the lack of appropriate mutualistic N-fixers. Arbuscular mycorrhizal fungi (AMF) from the native range stimulated stronger positive feedbacks than AMF from the expanded or invasive ranges, a biogeographic difference not described previously for invasive plants. Pythium taxa collected from soil in the native range were not more pathogenic than those from other ranges; however, feedbacks produced by the total soil biota were more negative from soils from the native range than from the other ranges, overriding the effects of AMF. This suggests that escape from other pathogens in the soil or the net negative effects of the whole soil community may contribute to superior performance in invaded regions. Our results suggest that important regional evolutionary relationships may occur among plants and soil biota, and that net effects of soil biota may affect invasion, but in ways that are not easily explained by studying isolated components of the soil biota.  相似文献   
359.
We describe an empirical model for exposure to respirable crystalline silica (RCS) to create a quantitative job-exposure matrix (JEM) for community-based studies. Personal measurements of exposure to RCS from Europe and Canada were obtained for exposure modelling. A mixed-effects model was elaborated, with region/country and job titles as random effect terms. The fixed effect terms included year of measurement, measurement strategy (representative or worst-case), sampling duration (minutes) and a priori exposure intensity rating for each job from an independently developed JEM (none, low, high). 23,640 personal RCS exposure measurements, covering a time period from 1976 to 2009, were available for modelling. The model indicated an overall downward time trend in RCS exposure levels of -6% per year. Exposure levels were higher in the UK and Canada, and lower in Northern Europe and Germany. Worst-case sampling was associated with higher reported exposure levels and an increase in sampling duration was associated with lower reported exposure levels. Highest predicted RCS exposure levels in the reference year (1998) were for chimney bricklayers (geometric mean 0.11 mg m(-3)), monument carvers and other stone cutters and carvers (0.10 mg m(-3)). The resulting model enables us to predict time-, job-, and region/country-specific exposure levels of RCS. These predictions will be used in the SYNERGY study, an ongoing pooled multinational community-based case-control study on lung cancer.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号