首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   7篇
  国内免费   1篇
安全科学   7篇
废物处理   16篇
环保管理   44篇
综合类   232篇
基础理论   40篇
污染及防治   70篇
评价与监测   15篇
社会与环境   5篇
  2020年   4篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2014年   5篇
  2013年   18篇
  2012年   10篇
  2011年   15篇
  2010年   12篇
  2009年   4篇
  2008年   14篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   6篇
  2003年   8篇
  2000年   7篇
  1996年   4篇
  1993年   4篇
  1992年   5篇
  1983年   5篇
  1981年   4篇
  1977年   6篇
  1965年   8篇
  1963年   4篇
  1962年   7篇
  1961年   5篇
  1960年   6篇
  1959年   7篇
  1958年   4篇
  1957年   12篇
  1956年   7篇
  1955年   8篇
  1954年   7篇
  1952年   5篇
  1941年   7篇
  1940年   8篇
  1939年   10篇
  1938年   4篇
  1937年   8篇
  1936年   5篇
  1935年   11篇
  1934年   7篇
  1933年   3篇
  1931年   5篇
  1929年   4篇
  1928年   4篇
  1927年   4篇
  1926年   5篇
  1924年   3篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
411.
Both intraspecific spatial aggregation and temporal priority effects have the potential to increase long-term species coexistence. Theory and models suggest that intraspecific aggregation can facilitate coexistence via limited dispersal or asymmetric interaction distances. During community assembly, intraspecific aggregation may also delay interactions between more and less competitive species, thus creating opportunities for priority effects to facilitate longer-term coexistence. Few empirical studies have tested predictions about aggregation and coexistence, especially in the context of community assembly or ecological restoration. We investigated (1) impacts of intraspecific aggregation on the assembly of eight-species communities over three years, (2) the scale dependence of these impacts, and (3) implications for California prairie restoration. We planted eight native species in each of 19, 5 m wide, octagonal plots. Species were either interspersed throughout the plot or aggregated into eight, 2.2-m(2), wedge-shaped, monospecific sectors. Over three years, species diversity declined more quickly in interspersed plots than in aggregated plots. Two species had higher cover or increased more in interspersed than aggregated plots and were identified as "aggressives." Four species had higher cover or increased more in aggregated than interspersed plots and were identified as "subordinates." Within aggregated plots, aggressive species expanded beyond the sector in which they were originally seeded. Cover of aggressive species increased faster and reached higher values in sectors that were adjacent to the originally planted sector, compared to nonadjacent sectors. Cover of aggressive species also increased more and faster near plot centers, compared to plot edges. Areas near plot centers were representative of smaller aggregation patches since species were planted closer to heterospecific neighbors. Two subordinate species maintained higher cover near plot edges than near plot centers. Moreover, two subordinate species maintained higher cover when seeded in sectors farther away from aggressive species. These results suggest that initial intraspecific aggregation can facilitate species coexistence for at least three years, and larger aggregation patches may be more effective than smaller ones in the face of dispersing dominants. The creation of temporal priority effects may represent an underappreciated pathway by which intraspecific aggregation can increase coexistence. Restorationists may be able to maintain more diverse communities by planting in a mosaic of monospecific patches.  相似文献   
412.
Thompson JN  Merg KF 《Ecology》2008,89(8):2197-2206
One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.  相似文献   
413.
Zak DR  Holmes WE  Pregitzer KS 《Ecology》2007,88(10):2630-2639
Anthropogenic O3 and CO2-induced declines in soil N availability could counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N demand and the acquisition of soil N by plants as well as the microbial supply of N from soil organic matter. To address this uncertainty, we initiated an ecosystem-level 15N tracer experiment at the Rhinelander (Wisconsin, USA) free air CO2-O3 enrichment (FACE) facility to understand how projected increases in atmospheric CO2 and 03 alter the distribution and flow of N in developing northern temperate forests. Tracer amounts of 15NH4+ were applied to the forest floor of developing Populus tremuloides and P. tremuloides-Betula papyrifera communities that have been exposed to factorial CO2 and O3 treatments for seven years. One year after isotope addition, both forest communities exposed to elevated CO2 obtained greater amounts of 15N (29%) and N (40%) from soil, despite no change in soil N availability or plant N-use efficiency. As such, elevated CO2 increased the ability of plants to exploit soil for N, through the development of a larger root system. Conversely, elevated O3 decreased the amount of 15N (-15%) and N (-29%) in both communities, a response resulting from lower rates of photosynthesis, decreases in growth, and smaller root systems that acquired less soil N. Neither CO2 nor 03 altered the amount of N or 15N recovery in the forest floor, microbial biomass, or soil organic matter. Moreover, we observed no interaction between CO2 and 03 on the amount of N or 15N in any ecosystem pool, suggesting that 03 could exert a negative effect regardless of CO2 concentration. In a CO2-enriched atmosphere, greater belowground growth and a more thorough exploitation of soil for growth-limiting N is an important mechanism sustaining the enhancement of NPP in developing forests (0-8 years following establishment). However, as CO2 accumulates in the Earth's atmosphere, future O3 concentrations threaten to diminish the enhancement of plant growth, decrease plant N acquisition, and lessen the storage of anthropogenic C in temperate forests.  相似文献   
414.
415.
416.
417.
418.
419.
420.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号