首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   7篇
  国内免费   1篇
安全科学   7篇
废物处理   20篇
环保管理   46篇
综合类   237篇
基础理论   72篇
污染及防治   109篇
评价与监测   18篇
社会与环境   5篇
灾害及防治   2篇
  2017年   7篇
  2016年   7篇
  2014年   8篇
  2013年   24篇
  2012年   17篇
  2011年   18篇
  2010年   13篇
  2009年   5篇
  2008年   18篇
  2007年   13篇
  2006年   11篇
  2005年   12篇
  2004年   6篇
  2003年   10篇
  2002年   7篇
  2001年   5篇
  2000年   12篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   6篇
  1995年   11篇
  1994年   6篇
  1992年   6篇
  1983年   5篇
  1977年   6篇
  1965年   8篇
  1962年   7篇
  1961年   5篇
  1960年   6篇
  1959年   7篇
  1958年   4篇
  1957年   12篇
  1956年   7篇
  1955年   8篇
  1954年   7篇
  1952年   5篇
  1941年   7篇
  1940年   8篇
  1939年   10篇
  1938年   4篇
  1937年   8篇
  1936年   5篇
  1935年   11篇
  1934年   7篇
  1931年   5篇
  1929年   4篇
  1928年   4篇
  1927年   4篇
  1926年   5篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
Background, Aims and Scope The acidification of mine waters is generally caused by metal sulfide oxidation, related to mining activities. These waters are characterized by low pH and high acidity due to strong buffering systems. The standard acidity parameter, the Base Neutralization Capacity (BNC) is determined by endpoint titration, and reflects a cumulative parameter of both hydrogen ions and all buffering systems, but does not give information on the individual buffer systems. We demonstrate that a detailed interpretation of titration curves can provide information about the strength of the buffering systems. The buffering systems are of importance for environmental studies and treatment of acidic mining waters. Methods Titrations were carried out by means of an automatic titrator using acidic mining waters from Germany and Canada. The curves were interpreted, compared with each other, to endpoint titration results and to elemental concentrations contained therein. Results and Discussion The titration curves were highly reproducible, and contained information about the strength of the buffer systems present. Interpretations are given, and the classification and comparison of acidic mining waters, by the nature and strength of their buffering systems derived from titration curves are discussed. The BNC-values calculated from the curves were more precise than the ones determined by the standard endpoint titration method. Due to the complex buffer mechanisms in acidic mining waters, the calculation of major metal concentrations from the shape of the titration curve resulted in estimates, which should not be confused with precise elemental analysis results. Conclusion Titration curves provide an inexpensive, valuable and versatile tool, by which to obtain sophisticated information of the acidity in acidic water. The information about the strength of the present buffer systems can help to understand and document the complex nature of acidic mining water buffer systems. Finally, the interpretation of titration curves could help to improve treatment measurements and the ecological understanding of these acidic waters.  相似文献   
55.
The wastewater from industrial area was treated by EC via Fe and Al electrodes. Cu, Ni, Cr and Zn were highly removed at the first minutes, simultaneously. Pseudo-2nd-order was found to be more suitable for kinetics. Adsorption capacities based on kinetic modeling were observed as Cr>Cu>Ni>Zn. The chemical cost in the case of pH adjustment after EC was less as 3.83 $/m3. It is known that wastewater produced by the metal-plating industry contains several heavy metals, which are acidic in nature and therefore toxic for the environment and for living creatures. In particular, heavy metals enter the food chain and accumulate in vital organs and cause serious illness. The precipitation of these metals is mostly achieved by pH adjustment, but as an alternative to this method, the electrocoagulation process has investigated in this study using iron and aluminum electrodes. The effects of the pH adjustment on removal before and after the electrocoagulation process were investigated, and cost analyses were also compared. It was observed that a high proportion of removal was obtained during the first minutes of the electrocoagulation process; thus, the current density did not have a great effect. In addition, the pH adjustment after the electrocoagulation process using iron electrodes, which are 10% more effective than aluminum electrodes, was found to be much more efficient than before the electrocoagulation process. In the process where kinetic modeling was applied, it was observed that the heavy metal removal mechanism was not solely due to the collapse of heavy metals at high pH values, and with this modeling, it was seen that this mechanism involved adsorption by iron and aluminum hydroxides formed during the electrocoagulation process. When comparing the ability of heavy metals to be adsorbed, the sequence was observed to be Cr>Cu>Ni>Zn, respectively.  相似文献   
56.
57.
58.
59.
We present a new method for estimating a distribution of dispersal displacements (a dispersal kernel) from mark-recapture data. One conventional method of calculating the dispersal kernel assumes that the distribution of displacements are Gaussian (e.g. resulting from a diffusion process) and that individuals remain within sampled areas. The first assumption prohibits an analysis of dispersal data that do not exhibit the Gaussian distribution (a common situation); the second assumption leads to underestimation of dispersal distance because individuals that disperse outside of sampling areas are never recaptured. Our method eliminates these two assumptions. In addition, the method can also accommodate mortality during a sampling period. This new method uses integrodifference equations to express the probability of spatial mark-recapture data; associated dispersal, survival, and recapture parameters are then estimated using a maximum likelihood method. We examined the accuracy of the estimators by applying the method to simulated data sets. Our method suggests designs for future mark-recapture experiments. Received: January 2004 / Revised: July 2005  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号