首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18585篇
  免费   364篇
  国内免费   706篇
安全科学   719篇
废物处理   780篇
环保管理   2686篇
综合类   3586篇
基础理论   4616篇
环境理论   7篇
污染及防治   4880篇
评价与监测   1126篇
社会与环境   1096篇
灾害及防治   159篇
  2023年   116篇
  2022年   244篇
  2021年   208篇
  2020年   241篇
  2019年   186篇
  2018年   319篇
  2017年   327篇
  2016年   468篇
  2015年   397篇
  2014年   525篇
  2013年   1500篇
  2012年   715篇
  2011年   988篇
  2010年   745篇
  2009年   846篇
  2008年   903篇
  2007年   922篇
  2006年   784篇
  2005年   653篇
  2004年   646篇
  2003年   614篇
  2002年   580篇
  2001年   674篇
  2000年   547篇
  1999年   336篇
  1998年   218篇
  1997年   248篇
  1996年   234篇
  1995年   273篇
  1994年   219篇
  1993年   215篇
  1992年   181篇
  1991年   184篇
  1990年   183篇
  1989年   183篇
  1988年   155篇
  1987年   133篇
  1986年   156篇
  1985年   143篇
  1984年   190篇
  1983年   148篇
  1982年   171篇
  1981年   157篇
  1980年   130篇
  1979年   149篇
  1978年   94篇
  1977年   98篇
  1975年   88篇
  1974年   93篇
  1972年   96篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
随着工业化、城镇化的深入推进,二氧化硫、氮氧化物、烟粉尘和挥发性有机物等各类污染物排放到环境中,致使中国大气受到严重污染,给人体的健康、动植物的生长、发育和繁殖等带来负面的影响。为实时监测环境空气质量,建立环境空气质量自动监测站逐渐成为大气污染防治的主要手段。文中以环境空气质量自动监测站为研究对象,提出环境空气质量自动监测站管理与维护面临的问题,探讨相应的解决措施,以期为环境空气质量自动监测站的管理与维护提供参考依据。  相似文献   
122.
Soil pollution with Cd is an environmental problem common in the world, and it is necessary to establish what Cd concentrations in soil could be dangerous to its fertility from toxicity effects and the risk of transference of this element to plants and other organisms of the food chain. In this study, we assessed Cd toxicity on soil microorganisms and plants in two semiarid soils (uncultivated and cultivated). Soil ATP content, dehydrogenase activity, and plant growth were measured in the two soils spiked with concentrations ranging from 3 to 8000 mg Cd/kg soil and incubated for 3 h, 20 days, and 60 days. The Cd concentrations that produced 5%; 10%;, and 50%; inhibition of each of the two soil microbiological parameter studied (ecological dose, ED, values) were calculated using two different mathematical models. Also, the effect of Cd concentration on plant growth of ryegrass (Lolium perenne, L.) was studied in the two soils. The Cd ED values calculated for soil dehydrogenase activity and ATP content were higher in the agricultural soils than in the bare soil. For ATP inhibition, higher ED values were calculated than for dehydrogenase activity inhibition. The average yields of ryegrass were reduced from 5.03 to 3.56 g in abandoned soil and from 4.21 to 1.15 g in agricultural soil with increasing concentrations of Cd in the soil. Plant growth was totally inhibited in abandoned and agricultural soils at Cd concentrations above 2000 and 5000 mg/kg soil, respectively. There was a positive correlation between the concentration of Cd in the plants and the total or DTPA-extractable concentrations of Cd in the soil.  相似文献   
123.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   
124.
Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively. Nitrogen-based applications of ATPL or NPL applied at rates estimated to supply 173 kg of plant-available nitrogen (PAN) ha(-1) resulted in significantly lower grain yields than treatments receiving commercial fertilizer at the same rate in 2000 and 2001 at Painter. These decreases in grain yield at the N-based application rates were attributed to inadequate N availability, resulting from overestimates of PAN as demonstrated by tissue N concentrations. However, at Orange no treatment effects on grain yield were observed. Applications of ATPL did not affect Al concentrations in corn ear-leaves at either location. Exchangeable soil Al concentrations were most elevated in treatments receiving only NH4NO3 as an N source. At N-based application rates, the ATPL resulted in lower Mehlich 1-extractable P (M1-P) and water-extractable soil phosphorus (H2O-P) concentrations compared to the application of NPL. A portion of this reduction could be attributed to lower rates of P applied in the N-based ATPL treatments. Runoff collected from treatments which received ATPL 2 d before conducting rainfall simulations contained 61 to 71% less dissolved reactive phosphorus (DRP) than treatments receiving NPL. These results show that ATPL may be used as a nutrient source for corn production without significant management alterations. Alum-treated poultry litter can also reduce the environmental impact of litter applications, primarily through minimizing the P status of soils receiving long-term applications of litter and reductions in runoff DRP losses shortly after application.  相似文献   
125.
What is soil organic matter worth?   总被引:3,自引:0,他引:3  
The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.  相似文献   
126.
Upflow reactors for riparian zone denitrification   总被引:1,自引:0,他引:1  
We used permeable reactive subsurface barriers consisting of a C source (wood particles), with very high hydraulic conductivities ( approximately 0.1-1 cm s(-1)), to provide high rates of riparian zone NO3-N removal at two field sites in an agricultural area of southwestern Ontario. At one site, a 0.73-m3 reactor containing fine wood particles was monitored for a 20-mo period and achieved a 33% reduction in mean influent NO3-N concentration of 11.5 mg L(-1) and a mean removal rate of 4.5 mg L(-1) d(-1) (0.7 g m(-2) d(-1)). At the second site, four smaller reactors (0.21 m3 each), two containing fine wood particles and two containing coarse wood particles, were monitored for a 4-mo period and were successful in attenuating mean influent NO3-N concentrations of 23.7 to 35.1 mg L(-1) by 41 to 63%. Mean reaction rates for the two coarse-particle reactors (3.2 and 7.8 mg L(-1) d(-1), or 1.5 and 3.4 g m(-2) d(-1)) were not significantly different (p > 0.2) than the rates observed in the two fine-particle reactors (5.0 and 9.9 mg L(-1) d(-1), or 1.8-3.5 g m(-2) d(-1)). A two-dimensional ground water flow model is used to illustrate how permeable reactive barriers such as these can be used to redirect ground water flow within riparian zones, potentially augmenting NO3- removal in this environment.  相似文献   
127.
Biostimulation has been used at various contaminated sites to promote the reductive dechlorination of trichloroethylene (TCE), but the addition of carbon and energy donor also stimulates bacteria that use Fe(III) as the terminal electron acceptor (TEA) in potential competition with dechlorination processes. Microcosm studies were conducted to determine the influence of various carbon donors on the extent of reductive dissolution of aquifer solids containing Fe(III) and arsenic. Glucose, a fermentable and respirable carbon donor, led to the production of 1500 mg Fe(II) kg(-1), or 24% of the total Fe in the aquifer sediment being reduced to Fe(II), whereas the same concentration of carbon as acetate resulted in only 300 mg Fe(II) kg(-1) being produced. The biogenic Fe(II) produced with acetate was exclusively associated with the solid phase whereas with fermentable carbon donors as whey and glucose, 22 and 54% of the Fe(II) was in solution. With fermentation, some of the metabolites appear to be electron shuttling chemicals and chelating agents that facilitate the reductive dissolution of even crystalline Fe(III) oxides. Without the presence of electron shuttling chemicals, only surficial Fe in direct contact with the bacteria was bioavailable, as illustrated when acetate was used. Regardless of carbon donor type and concentration, As concentrations in the water exceeded drinking water standards. The As dissolution appears to have been the result of the direct use of As as an electron acceptor by dissimilatory arsenic reducing bacteria. Our findings indicate that selection of the carbon and energy donor for biostimulation for remediation of chlorinated solvent impacted aquifers may greatly influence the extent of the reductive dissolution of iron minerals in direct competition with dechlorination processes. Biostimulation may also result in a significant release of As to the solution phase, contributing to further contamination of the aquifer.  相似文献   
128.
Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from increasing the yield, evinced improvement in the texture and fertility of mine spoil and the nutrient content of crop produce. Furthermore, some increase in the content of trace and heavy metals and the level of gamma-emitters in the mine spoil and crop produce was observed, but well within the permissible limits. The residual effect of LFA on succeeding crops was also encouraging in terms of eco-friendliness. Beyond 20 t/ha of LFA, the crop yield decreased significantly (p < 0.05), as a result of the formation of hardpan in the mine spoil and possibly the higher concentration of soluble salts in the LFA. However, the adverse effects of soluble salts were annulled progressively during the cultivation of succeeding crops. A plausible mechanism for the improved fertility of mine spoil and the carryover or uptake of toxic trace and heavy metals and gamma-emitters in mine spoil and crop produce is also discussed.  相似文献   
129.
Thallium: a review of public health and environmental concerns   总被引:22,自引:0,他引:22  
Thallium (Tl) is a rare but widely dispersed element. All forms of thallium are soluble enough to be toxic to living organisms. Thallium is more toxic to humans than mercury, cadmium, lead, copper or zinc and has been responsible for many accidental, occupational, deliberate, and therapeutic poisonings since its discovery in 1861. Its chemical behavior resembles the heavy metals (lead, gold and silver) on the one hand and the alkali metals (K, Rb, Cs) on the other. It occurs almost exclusively in natural waters as monovalent thallous cation. The solubility of thallous compounds is relatively high so that monovalent thallium is readily transported through aqueous routes into the environment. Tl can be transferred from soils to crops readily and accrues in food crops. The fascinating chemistry and high toxicity potential make thallium and its compounds of particular scientific interest and environmental concern. Thallium was detected in base-metal mining effluents. The conventional removal of heavy metals from wastewater has little effect on thallium. In this review, various treatment options and removal technologies are enumerated in order to protect the environment from thallium toxicity.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号