首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   5篇
  国内免费   4篇
安全科学   12篇
废物处理   14篇
环保管理   10篇
综合类   80篇
基础理论   53篇
污染及防治   54篇
评价与监测   15篇
社会与环境   5篇
灾害及防治   1篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   11篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   11篇
  2015年   16篇
  2014年   11篇
  2013年   16篇
  2012年   16篇
  2011年   13篇
  2010年   12篇
  2009年   9篇
  2008年   12篇
  2007年   20篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   11篇
  2002年   7篇
  2001年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1991年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有244条查询结果,搜索用时 156 毫秒
191.
Conservation of the marine environment mainly focuses on threatened elements and more precisely on vulnerable and endangered species like birds and mammals. When dealing with the conservation of marine habitats, the scientific community is mainly interested in hot spots of diversity, like seagrass beds in Europe, or hot spots of endemism, like coral reefs in tropical areas. Nevertheless, using the example of a common and widespread marine invertebrate, the sandmason worm (Lanice conchilega, Polychaeta, Terebellidae), we show that vulnerability and rarity are not the only criteria to take into account in order to select the best natural element for conservation. This species can form dense beds that increase biodiversity, are attractive feeding grounds for birds and fishes, and have a high socioeconomic value. In consequence, they have a high functional value that should be considered as an important conservation stake. Through the example of the Chausey archipelago and the Bay of the Mont Saint-Michel (France), we propose a synthetic interdisciplinary approach to evaluate the conservation needs of these beds. The issue is even more pressing when one considers that these natural elements and many similar ones still do not benefit from any legal protection in Europe despite their high heritage value.  相似文献   
192.
This article provides an overview of the developments concerning sustainable remediation (SR) from the authors’ perspective. A short history of policy development is outlined, in which the focus mainly lies on the Netherlands since this is the homeland of the majority of the authors. The Netherlands is a densely populated country with high pressure on land and was in the forefront of developments in soil policy. The authors plead for simplicity in approaches, as history has proven that the simpler theory more often is true, and above all will better be understood by stakeholders and, thus, will more easily lead to consensus. Implicitly the authors make clear that SR not only has benefits from a societal, economic, and environmental point of view, but if the methodologies are implemented correctly, it leads to more robust and supported decision making. Moreover, it opens the road to flexible and integral remedial objectives that enable innovative and creative solutions for soil and groundwater contamination. The proposed methodologies and creative innovations are illustrated with full‐scale operational cases. ©2017 Wiley Periodicals, Inc.  相似文献   
193.
The effect of phenanthrene on the bacterial community was studied on permanent grassland soil historically presenting low contamination (i.e. less than 1 mg kg?1) by polycyclic aromatic hydrocarbons (PAHs). Microcosms of soil were spiked with phenanthrene at 300 mg kg?1. After 30 days of incubation, the phenanthrene concentration decreased rapidly until its total dissipation within 90 days. During this incubation period, significant changes of the total bacterial community diversity were observed, as assessed by automated-ribosomal intergenic spacer analysis fingerprinting. In order to get a deeper view of the effect of phenanthrene on the bacterial community, the abundances of ten phyla and classes (Actinobacteria, Acidobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Verrucomicrobiales, Gemmatimonadetes, and Planctomycetes) were monitored by quantitative polymerase chain reaction performed on soil DNA extracts. Interestingly, abundances of some bacterial taxa significantly changed as compared with controls. Moreover, among these bacterial groups impacted by phenanthrene spiking, some of them presented the potential of phenanthrene degradation, as assessed by PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene detection. However, neither the abundance nor the diversity of the PAH-RHDα genes was significantly impacted by phenanthrene spiking, highlighting the low impact of this organic contaminant on the functional bacterial diversities in grassland soil.  相似文献   
194.
Dissolved and particulate Ag concentrations (AgD and AgP, respectively) were measured in surface water and suspended particulate matter (SPM) along the salinity gradient of the Gironde Estuary, South West France, during three cruises (2008–2009) covering contrasting hydrological conditions, i.e. two cruises during intermediate and one during high freshwater discharge (~740 and ~2,300 m3/s). Silver distribution reflected non-conservative behaviour with 60–70 % of AgP in freshwater particles being desorbed by chlorocomplexation. The amount of AgP desorbed was similar to the so-called reactive, potentially bioavailable AgP fraction (60?±?4 %) extracted from river SPM by 1 M HCl. Both AgP (0.22?±?0.05 mg/kg) and AgP/ThP (0.025–0.028) in the residual fraction of fluvial and estuarine SPM were similar to those in SPM from the estuary mouth and in coastal sediments from the shelf off the Gironde Estuary, indicating that chlorocomplexation desorbs the reactive AgP. The data show that desorption of reactive AgP mainly occurs inside the estuary during low and intermediate discharge, whereas expulsion of partially AgP-depleted SPM (AgP/ThP ~0.040) during the flood implies ongoing desorption in the coastal ocean, e.g. in the nearby oyster production areas (Marennes-Oléron Bay). The highest AgD levels (6–8 ng/L) occurred in the mid-salinity range (15–20) of the Gironde Estuary and were decoupled from freshwater discharge. In the maximum turbidity zone, AgD were at minimum, showing that high SPM concentrations (a) induce AgD adsorption in estuarine freshwater and (b) counterbalance AgP desorption in the low salinity range (1–3). Accordingly, Ag behaviour in turbid estuaries appears to be controlled by the balance between salinity and SPM levels. The first estimates of daily AgD net fluxes for the Gironde Estuary (Boyle’s method) showed relatively stable theoretical AgD at zero salinity (Ag D 0 = 25–30 ng/L) for the contrasting hydrological situations. Accordingly, AgD net fluxes were very similar for the situations with intermediate discharge (1.7 and 1.6 g/day) and clearly higher during the flood (5.0 g/day) despite incomplete desorption. Applying Ag D 0 to the annual freshwater inputs provided an annual net AgD flux (0.64–0.89 t/year in 2008 and 0.56–0.77 t/year in 2009) that was 12–50 times greater than the AgD gross flux. This estimate was consistent with net AgD flux estimates obtained from gross AgP flux considering 60 % desorption in the estuarine salinity gradient.  相似文献   
195.
Protecting structural features, such as tree-related microhabitats (TreMs), is a cost-effective tool crucial for biodiversity conservation applicable to large forested landscapes. Although the development of TreMs is influenced by tree diameter, species, and vitality, the relationships between tree age and TreM profile remain poorly understood. Using a tree-ring-based approach and a large data set of 8038 trees, we modeled the effects of tree age, diameter, and site characteristics on TreM richness and occurrence across some of the most intact primary temperate forests in Europe, including mixed beech and spruce forests. We observed an overall increase in TreM richness on old and large trees in both forest types. The occurrence of specific TreM groups was variably related to tree age and diameter, but some TreM groups (e.g., epiphytes) had a stronger positive relationship with tree species and elevation. Although many TreM groups were positively associated with tree age and diameter, only two TreM groups in spruce stands reacted exclusively to tree age (insect galleries and exposed sapwood) without responding to diameter. Thus, the retention of trees for conservation purposes based on tree diameter appears to be a generally feasible approach with a rather low risk of underrepresentation of TreMs. Because greater tree age and diameter positively affected TreM development, placing a greater emphasis on conserving large trees and allowing them to reach older ages, for example, through the establishment of conservation reserves, would better maintain the continuity of TreM resource and associated biodiversity. However, this approach may be difficult due to the widespread intensification of forest management and global climate change.  相似文献   
196.
A field survey of higher terrestrial plants growing on Lanping lead-zinc mine, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Cd, Cu and Zn of 20 samples of 17 plant species. Concentrations of Pb and Zn in soil and in plant were higher than that of Cu and Cd. Significant difference was observed among the average concentrations of four heavy metals in plants (except Cd and Cu) and in soil (except Pb and Zn) (P<0.05). For the enrichment coefficient of the four heavy metals in plant, the order of average was Pbtree>herbaceous, and herbaceous grew in soil with the highest concentrations of four heavy metals. In different areas, the concentrations of Pb, Cd, Cu and Zn in plants and soils and enrichment coefficient were different. Plants in Paomaping had more accumulating ability to Pb, Cd and Zn, and plants in Jinfeng River had more accumulating ability to Cu. Six plant species, i.e. S. cathayana, Lithocarpus dealbatus, L. plyneura, Fargesia dura, Arundinella yunnanensis and R. annae in Paomaping, had high accumulation capacity. R. annae in Paomaping had hyperaccumulating capacity to Pb, Cd and Zn, L. plyneura to Pb and Cd, and S. cathayana to Cd, respectively.  相似文献   
197.
The Biological Resource Centre for the Environment BRC4Env is a network of Biological Resource Centres (BRCs) and collections whose leading objectives are to improve the visibility of genetic and biological resources maintained by its BRCs and collections and to facilitate their use by a large research community, from agriculture research to life sciences and environmental sciences. Its added value relies on sharing skills, harmonizing practices, triggering projects in comparative biology, and ultimately proposing a single-entry portal to facilitate access to documented samples, taking into account the partnership policies of research institutions as well as the legal frame which varies with the biological nature of resources. BRC4Env currently includes three BRCs: the Centre for Soil Genetic Resources of the platform GenoSol, in partnership with the European Conservatory of Soil Samples; the Egg Parasitoids Collection (EP-Coll); and the collection of ichthyological samples, Colisa. BRC4Env is also associated to several biological collections: microbial consortia (entomopathogenic bacteria, freshwater microalgae…), terrestrial arthropods, nematodes (plant parasitic, entomopathogenic, animal parasitic...), and small mammals. The BRCs and collections of BRC4Env are involved in partnership with academic scientists, as well as private companies, in the fields of medicinal mining, biocontrol, sustainable agriculture, and additional sectors. Moreover, the staff of the BRCs is involved in many training courses for students from French licence degree to Ph.D, engineers, as well as ongoing training.  相似文献   
198.
Soil quality in urban areas in India is degraded due to multiple anthropogenic activities. The objectives of this work are to determine the concentration variations, toxicity, and sources of carbons, metals, and ions in the surface soil of Raipur, the industrialized capital city of Chhattisgarh state, India. High concentrations of Al, K, Ca, Ti, Fe, and elemental carbon (EC) were registered. Relatively lower concentrations of V, Cr, Mn, Ni, Cu, Zn, Sr, Ba, Pb, organic carbon (OC), and carbonate carbon (CC), as well as ions (viz. F, Cl, NO3, SO42–, Na+, K+, Mg2+, and Ca2+), were also recorded. EC was found to be one of the major pollutants, although enrichment factors pointed to high contamination with SO42–, K+, Mg2+, Cr, Mn, and Pb; and extreme contamination with NO3 and Ca2+. The spatial and temporal variations, enrichment factors, toxicity, and sources of the chemical species detected in the soil are discussed.  相似文献   
199.
Heavy metal contamination is of particular concern for human health and the environment. Phytoremediation is an emerging cost‐effective strategy to remediate heavy metal contaminated soil. However, this technique is limited by the small number of plants that are tolerant to heavy metals and are also accumulators. This study assayed zinc, lead, and cadmium tolerance and accumulation in Cistus libanotis, Cistus albidus, and Cistus salviifolius. The plants were cultivated in hydroponic conditions and exposed to different concentrations of Pb(NO3)2 (100 and 200 µM), ZnSO4 (100 and 200 µM), or CdCl2 (10 and 20 µM) for 3 weeks. Plant biomass and metal accumulation in roots and aboveground parts varied greatly among the species. All three species appeared to be sensitive to Zn. However, C. albidus displayed strong tolerance to Pb and accumulated large quantities of Pb and Cd in its roots. C. libanotis accumulated large quantities of Pb and Cd in its aboveground parts. C. libanotis can thus be classified as a Pb and Cd accumulator species. The study results show that C. albidus is suitable for phytostabilization of Pb‐contaminated soils, while C. libanotis can be used for phytoextraction of both Pb and Cd.  相似文献   
200.
The paper aims at simulating the closed-system dynamic leaching of a cement-based monolith containing lead with the numerical reactive transport code HYTEC in a 3D-cylindrical geometry. The model considers, simultaneously, the chemical evolution of pore water, the progression of mineralogical alteration fronts, and the concomitant release of elements from the S/S waste. In good agreement with the experiment, element releases were found to be mainly controlled by either diffusion (Na, K, and, to a lesser extent, Cl), by surface dissolution (Ca, Si) or by a mixed evolution (Pb, SO4). All of the calculated mineralogical transformations take place in a thin layer beyond the monolith surface. Consequently, modelling of Ca, Si and SO4 releases was quite sensitive to the node size of the simulation grid and was improved by taking into account the increase of porosity and effective diffusion coefficient due to mineral dissolution in the leached layer. In agreement with experimental results, the deepest front corresponds under closed-system conditions to portlandite dissolution and calcium silicate hydrates CSH 1.8 transformation into CSH of lower Ca/Si ratio. A second, distinct and intermediate, front is made by ettringite dissolution. The network of CSH is globally preserved in the leached layer, complete dissolution occurring over a very small thickness only. Finally, hydrotalcite precipitation in the leached layer is expected by modelling due to pH drop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号