首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17886篇
  免费   1048篇
  国内免费   6210篇
安全科学   1464篇
废物处理   1097篇
环保管理   1494篇
综合类   10520篇
基础理论   2787篇
污染及防治   5432篇
评价与监测   867篇
社会与环境   692篇
灾害及防治   791篇
  2024年   30篇
  2023年   289篇
  2022年   873篇
  2021年   807篇
  2020年   667篇
  2019年   561篇
  2018年   704篇
  2017年   817篇
  2016年   761篇
  2015年   1015篇
  2014年   1418篇
  2013年   1793篇
  2012年   1531篇
  2011年   1594篇
  2010年   1330篇
  2009年   1281篇
  2008年   1377篇
  2007年   1139篇
  2006年   1148篇
  2005年   739篇
  2004年   560篇
  2003年   611篇
  2002年   557篇
  2001年   424篇
  2000年   510篇
  1999年   439篇
  1998年   355篇
  1997年   376篇
  1996年   327篇
  1995年   262篇
  1994年   199篇
  1993年   164篇
  1992年   151篇
  1991年   92篇
  1990年   77篇
  1989年   36篇
  1988年   35篇
  1987年   26篇
  1986年   15篇
  1985年   11篇
  1984年   9篇
  1983年   9篇
  1982年   14篇
  1981年   8篇
  1979年   1篇
  1976年   1篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
杨正  李俊奇  王文亮  车伍  俱晨涛  赵杨 《环境工程》2020,38(4):10-15,38
海绵城市建设是在继承我国古代先贤智慧和参考国外经验,系统总结我国雨洪管理领域长期研究和实践经验的基础上,结合我国城市水系统实际问题提出的城市发展方式,其核心是构建基于绿灰结合的现代城市雨洪控制系统,通过"渗、滞、蓄、净、用、排"综合措施,实现"治涝"与"治黑"等多重目标。低影响开发是海绵城市建设的重要指导思想,也是海绵城市核心技术体系的重要组成部分。正确认识低影响开发与海绵城市的内涵与联系,对于进一步在全国范围内落实低影响开发建设模式,科学推进海绵城市建设具有重要意义。  相似文献   
42.
陈伟  赵杨  杨正  车伍  闫攀 《环境工程》2020,38(4):16-20
1968年美国开始推行洪涝保险计划,不断完善对洪涝风险的研究,并逐步形成了一套相对完善的洪泛区管理体系,而洪涝风险分析在洪涝保险、城市规划、土地开发、应急管理等领域广泛应用。纽约市在经历了多次飓风侵害,尤其是2012年飓风桑迪(Sandy)之后,意识到城市绿地在极端暴雨事件时对雨洪调蓄的重要作用,经过持续的研究实践,提出了基于洪涝风险分析的城市绿地规划设计要求。基于总结美国纽约市在飓风桑迪影响下对洪涝风险图的调整,及其对城市绿地规划设计相关要求,提出其对我国洪涝风险管控及城市绿地规划设计的启示。  相似文献   
43.
The performance of Ce-OMS-2 catalysts was improved by tuning the fill percentage in the hydrothermal synthesis process to increase the oxygen vacancy density. The Ce-OMS-2 samples were prepared with different fill percentages by means of a hydrothermal approach (i.e. 80%, 70%, 50% and 30%). Ce-OMS-2 with 80% fill percentage (Ce-OMS-2-80%) showed ozone conversion of 97%, and a lifetime experiment carried out for more than 20?days showed that the activity of the catalyst still remained satisfactorily high (91%). For Ce-OMS-2-80%, Mn ions in the framework as well as K ions in the tunnel sites were replaced by Ce4+, while for the others only Mn ions were replaced. O2-TPD and H2-TPR measurements proved that the Ce-OMS-2-80% catalyst possessed the greatest number of mobile surface oxygen species. XPS and XAFS showed that increasing the fill percentage can reduce the AOS of Mn and augment the amount of oxygen vacancies. The active sites, which accelerate the elimination of O3, can be enriched by increasing the oxygen vacancies. These findings indicate that increasing ozone removal can be achieved by tuning the fill percentage in the hydrothermal synthesis process.  相似文献   
44.
Glycine(Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation(NPF).However,the potential mechanism of its on sulfuric acid(SA)-ammonia(A)clusters formation under various atmospheric conditions is still ambiguous.Herein,a(Gly)_x·(SA)_y·(A)_z(z≤x+y≤3) multicomponent system was investigated by using density functional theory(DFT) combined with Atmospheric Cluster Dynamics Code(ACDC) at different temperatures and precursor concentrations.The results show that Gly,with one carboxyl(-COOH) and one amine(-NH_2) group,can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer.Within the relevant range of atmospheric concentrations,Gly can enhance the formation rate of SA-A-based clusters,especially at low temperature,low [SA],and median [A].The enhancement(R) of Gly on NPF can be up to 340 at T=218.15 K,[SA]=10~4,[A]=10~9,and [Gly]=10~7 molecules/cm~3.In addition,the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly],it acts as an important "transporter" to connect the smaller and larger cluster.With the increase of [Gly],it acts as a "participator" directly participating in NPF.  相似文献   
45.
Five biochars derived from lotus seedpod(LSP) were applied to examine and compare the adsorption capacity of 17β-estradiol(E2) from aqueous solution.The effect of KOH activation and the order of activation steps on material properties were discussed.The effect of contact time,initial concentration,p H,ionic strength and humic acid on E2 adsorption were investigated in a batch adsorption process.Experimental results demonstrated that the pseudo second-order model fitted the experimental data best and that adsorption equilibrium was reached within 20 hr.The efficiency of E2 removal increased with increasing E2 concentration and decreased with the increase of ionic strength.E2 adsorption on LSP-derived biochar(BCs) was influenced little by humic acid,and slightly affected by the solution p H when its value ranged from 4.0 to 9.0,but considerably affected at p H 10.0.Low environmental temperature is favorable for E2 adsorption.Chemisorption,π–π interactions,monolayer adsorption and electrostatic interaction are the possible adsorption mechanisms.Comparative studies indicated that KOH activation and the order of activation steps had significant impacts on the material.Post-treated biochar exhibited better adsorption capacity for E2 than direct treated,pretreated,and raw LSP biochar.Pyrolyzed biochar at higher temperature improved E2 removal.The excellent performance of BCs in removing E2 suggested that BCs have potential in E2 treatment and that the biochar directly treated by KOH would be a good choice for the treatment of E2 in aqueous solution,with its advantages of good efficiency and simple technology.  相似文献   
46.
F-V_2 O_5-WO3/Ti02 catalysts were prepared by the impregnation method.As the content of F ions increased from 0.00 to 0.35 wt.%,the NO conversion of F-V_2 O_5-WO_3/TiO_2 catalysts initially increased and then decreased.The 0.2 F-V_2 O_5-WO_3/TiO_2 catalyst(0.2 wt.% F ion)exhibited the best denitration(De-NOx) performance,with more than 95% NO conversion in the temperature range 160-360℃,and 99.0% N2 selectivity between 110 and 280℃.The addition of an appropriate amount of F ions eroded the surface morphology of the catalyst and reduced its grain size,thus enhancing the NO conversion at low temperature as well as the sulfur and water resistance of the V_2 O_5-WO3/Ti02 catalyst.After selective catalytic reduction(SCR) reaction in a gas flow containing SO_2 and H_2 O,the number of NH3 adsorption sites,active component content,specific surface area and pore volume decreased to different degrees.Ammonium sulfate species deposited on the catalyst surface,which blocked part of the active sites and reduced the NO conversion performance of the catalyst.On-line thermal regeneration could not completely recover the catalyst activity,although it prolonged the cumulative life of the catalyst.In addition,a mechanism for the effects of S02 and H_2 O on catalyst NO conversion was proposed.  相似文献   
47.
This study profiled the bacterial community variations of water from four water treatment systems, including coagulation, sedimentation, sand filtration, ozonation-biological activated carbon filtration (O3-BAC), disinfection, and the tap water after the distribution process in eastern China. The results showed that different water treatment processes affected the bacterial community structure in different ways. The traditional treatment processes, including coagulation, sedimentation and sand filtration, reduced the total bacterial count, while they had little effect on the bacterial community structure in the treated water (before disinfection). Compared to the traditional treatment process, O3-BAC reduced the relative abundance of Sphingomonas in the finished water. In addition, ozonation may play a role in reducing the relative abundance of Mycobacterium. NaClO and ClO2 had different effects on the bacterial community in the finished water. The relative abundance of some bacteria (e.g. Flavobacterium, Phreatobacter and Porphyrobacter) increased in the finished water after ClO2 disinfection. The relative abundance of Mycobacterium and Legionella, which have been widely reported as waterborne opportunistic pathogens, increased after NaClO disinfection. In addition, some microorganisms proliferated and grew in the distribution system, which could lead to turbidity increases in the tap water. Compared to those in the finished water, the relative abundance of Sphingomonas, Hyphomicrobium, Phreatobacter, Rheinheimera, Pseudomonas and Acinetobacter increased in the tap water disinfected with NaClO, while the relative abundance of Mycobacterium increased in the tap water disinfected with ClO2. Overall, this study provided the detailed variation in the bacterial community in the drinking water system.  相似文献   
48.
Inhaled atmospheric fine particulate matter(PM_(2.5)) includes soluble and insoluble fractions,and each fraction can interact with cells and cause adverse effects.PM_(2.5) samples were collected in Jinan,China,and the soluble and insoluble fractions were separated.According to physiochemical characterization,the soluble fraction mainly contains watersoluble ions and organic acids,and the insoluble fraction mainly contains kaolinite,calcium carbonate and some organic carbon.The interaction between PM_(2.5) and model cell membranes was examined with a quartz crystal microbalance with dissipation(QCM-D) to quantify PM_(2.5) attachment on membranes and membrane disruption.The cytotoxicity of the total PM_(2.5) and the soluble and insoluble fractions,was investigated.Negatively charged PM_(2.5) can adhere to the positively charged membranes and disrupt them.PM_(2.5)also adheres to negatively charged membranes but does not cause membrane rupture.Therefore,electrostatic repulsion does not prevent PM_(2.5) attachment,but electrostatic attraction induces remarkable membrane rupture.The human lung epithelial cell line A549 was used for cytotoxicity assessment.The detected membrane leakage,cellular swelling and blebbing indicated a cell necrosis process.Moreover,the insoluble PM_(2.5) fraction caused a higher cell mortality and more serious cell membrane damage than the soluble fraction.The levels of reactive oxygen species(ROS) enhanced by the two fractions were not significantly different.The findings provide more information to better understand the mechanism of PM_(2.5) cytotoxicity and the effect of PM_(2.5) solubility on cytotoxicity.  相似文献   
49.
Electrotrophs are microbes that can receive electrons directly from cathode in a microbial electrolysis cell (MEC). They not only participate in organic biosynthesis, but also be crucial in cathode-based bioremediation. However, little is known about the electrotrophic community in paddy soils. Here, the putative electrotrophs were enriched by cathodes of MECs constructed from five paddy soils with various properties using bicarbonate as an electron acceptor, and identified by 16S rRNA-gene based Illumina sequencing. The electrons were gradually consumed on the cathodes, and 25%–45% of which were recovered to reduce bicarbonate to acetic acid during MEC operation. Firmicutes was the dominant bacterial phylum on the cathodes, and Bacillus genus within this phylum was greatly enriched and was the most abundant population among the detected putative electrotrophs for almost all soils. Furthermore, several other members of Firmicutes and Proteobacteria may also participate in electrotrophic process in different soils. Soil pH, amorphous iron and electrical conductivity significantly influenced the putative electrotrophic bacterial community, which explained about 33.5% of the community structural variation. This study provides a basis for understanding the microbial diversity of putative electrotrophs in paddy soils, and highlights the importance of soil properties in shaping the community of putative electrotrophs.  相似文献   
50.
Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号