全文获取类型
收费全文 | 15891篇 |
免费 | 865篇 |
国内免费 | 5872篇 |
专业分类
安全科学 | 1251篇 |
废物处理 | 1002篇 |
环保管理 | 1308篇 |
综合类 | 9336篇 |
基础理论 | 2441篇 |
污染及防治 | 5273篇 |
评价与监测 | 745篇 |
社会与环境 | 595篇 |
灾害及防治 | 677篇 |
出版年
2024年 | 29篇 |
2023年 | 273篇 |
2022年 | 784篇 |
2021年 | 737篇 |
2020年 | 576篇 |
2019年 | 500篇 |
2018年 | 643篇 |
2017年 | 749篇 |
2016年 | 858篇 |
2015年 | 1042篇 |
2014年 | 1290篇 |
2013年 | 1613篇 |
2012年 | 1376篇 |
2011年 | 1405篇 |
2010年 | 1161篇 |
2009年 | 1140篇 |
2008年 | 1224篇 |
2007年 | 1015篇 |
2006年 | 1011篇 |
2005年 | 649篇 |
2004年 | 481篇 |
2003年 | 540篇 |
2002年 | 489篇 |
2001年 | 357篇 |
2000年 | 439篇 |
1999年 | 382篇 |
1998年 | 303篇 |
1997年 | 331篇 |
1996年 | 286篇 |
1995年 | 222篇 |
1994年 | 171篇 |
1993年 | 140篇 |
1992年 | 130篇 |
1991年 | 73篇 |
1990年 | 68篇 |
1989年 | 27篇 |
1988年 | 30篇 |
1987年 | 21篇 |
1986年 | 15篇 |
1985年 | 9篇 |
1984年 | 7篇 |
1983年 | 8篇 |
1982年 | 13篇 |
1981年 | 8篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
671.
Li Q. Liu L. Cai Y. Pei S. Luo Y. Liu L. Fan H. Sun F. Zhou C. Shen X. Chen Y. 《应用与环境生物学报》2018,(3):441-449
Desertification has emerged as a serious threat to the alpine meadows of Northwest Sichuan in recent decades. Artificial vegetation had certain effects on desertification recovery, while how the CO2 flux changed and its reasons are still unclear. During the growing season in 2016 (i.e., from July to September), we selected the desertified alpine meadows with different recovery degrees, including the early stage of restoration, the middle stage of restoration, the late stage of restoration, and control (the unrecovered desertification meadow) as four transects. CO2 flux was measured by the instrument LI-8100, and the microenvironment factors that affected CO2 flux changes were analyzed. The results showed that the carbon sequestration function of desertified alpine meadows gradually increased with the degree of recovery. Net ecosystem exchange (NEE) were -1.61, -3.55, and -4.38 μmol m-2 s-1 in the early, mid-term, and late transects, respectively, and the most dramatic changes occurred from the early stage to mid-term stage, increasing by 120.50%. Both ecosystem respiration (ER) and soil respiration (SR) were enhanced significantly with restoration (P < 0.05). In mid or late July, NEE, ER, and SR reached their maximum values, and thereafter, the indicators varied to near zero (P < 0.05). During the whole growing season, the daily dynamic in CO2 flux for the control alpine meadow was mild and retained the trend of continuous release all day, but that in the desertified alpine meadow was a single peak pattern. Moreover, with restoration process, the peak of CO2 flux increased and reached a peak in the late stage of the recovery process. The regression analysis showed that there was a significant positive correlation between CO2 flux and vegetation coverage, aboveground biomass, and soil moisture (0-5 cm) (P < 0.01), and a weak correlation with 0-5-cm soil temperature (P < 0.01). This indicates that topsoil moisture (5 cm) is a more significant factor for CO2 flux than topsoil temperature during the growing season in the restoration of desertified alpine meadows in Northwest Sichuan. In general, the vegetation recovery significantly improved the carbon-sequestration ability of the desertified alpine meadows during the growing season in Northwest Sichuan, and at the middle stage of restoration, the carbon-sequestration ability improved significantly due to vegetation restoration and increase in topsoil (0-5 cm) moisture. © 2018 Science Press. All rights reserved. 相似文献
672.
To explore the role of endophytic fungi in the decomposition of litter, the endophytic fungi Penicillium sp. strain CG2 (A), Fusarium flavum strain AY13 (B), and Talaromyces strain AJ14 (C) of Cunninghamia lanceolata were added to experimental pots in different forms (mycelium, sterilized fermentation broth, single fungus, and mixed fungi), and a control treatment (CK) was set up (no fungi added). At 10, 30, 60, 90, and 120 days after litter decomposition, a study on the decomposition dynamics of C. lanceolata litter under different treatments was performed. The results showed that the rate of leaf mass loss was the highest in the sterilized fermentation broth treatment A after 120 days, and that there was a significant difference (P < 0.05) between the mycelium treatment AC and the control treatment after 60 days (23.97% higher than the control group). On day 60, the litter carbon content from the mycelium treatment A was significantly different from that of the control (P < 0.05), showing a 16.74% lower value, whereas the litter carbon content of the mycelium treatment B was 21.13% lower than that of the control after 90 days. The nitrogen content of the litters of most mycelium and sterilized fermentation broth treatments was increased compared to that of the control group; there was significant difference (P < 0.05) between the sterilized fermentation broth treatment A and the control (P < 0.05), with a 17.05% higher value than that of the control. Similar to nitrogen, the litter phosphorus content also increased; there was a statistically significant difference between the mycelium treatment A and the control group, with treatment A showing a 46.67% higher value than the control group. The potassium content was 28% lower than that of the control group under the sterilized fermentation broth treatment C, a result that was significantly different from that of the control group (P < 0.05). After treatment for 90 days, the ratio of carbon to nitrogen was the lowest under the treatments with the mycelium A and the mycelium B, with values 25.54% and 25.11% lower than that of the control group, respectively, and a statistically significant difference from that of the control group (P < 0.05). The ratio of carbon to phosphorus was the lowest under the treatment with mycelium A after 60 days, and the result was significantly different from that of the control (P < 0.05), with a 43.05% lower value than the control. Thus, the three endophytic fungi had different effects on the mass loss rate and nutrient content of the litter. The Penicillium sp. strain CG2 (A) had statistically significant effects on the mass loss and nutrient content of leaf litter, which was within the range of fungi fertilizer reference values for the breeding of C. lanceolata. © 2018 Science Press. All rights reserved. 相似文献
673.
674.
Acer catalpifolium Rehd., a critically endangered tree species with an extremely limited range of distribution, is one of the 120 plant species with extremely small populations, as approved by the state forestry administration of the People's Republic of China and requires urgent rescue action. In order to comprehensively understand the population status and the future developmental trend of A. catalpifolium, the plant communities were investigated from 5 sites, including Caishenmiao (CSM), Banruosi (BRS), Zhangshancun (ZSC), Fuhusi (FHS), and Baoguosi (BGS). The population structure of A. catalpifolium as well as the species composition and community characteristics of its habitat were investigated. The results showed that A. catalpifolium is mainly distributed in the evergreen broad-leaved and deciduous broad-leaved mixed forests, in different community layers, namely, the tree layer, shrub layer, and herb layer, and is accompanied by 52, 74, and 52 plant species, respectively. Analyses of the distribution of population abundance revealed that BRS had the largest distribution of A. catalpifolium, accounting for 26.04% of the total population, followed by FHS, ZSC, BGS, and CSM, in that order. Analyses of the community characteristics revealed that the species diversity indices in FHS, BRS, BGS, and CSM were greater than that in ZSC. Analyses of the population age structure of A. catalpifolium revealed the gap in the distribution of the levels of seedlings and young trees. There were serious obstacles to the regeneration of the natural population. We concluded that the obstacle to the regeneration of the population of A. catalpifolium might be caused by the high competitive pressure from the dominant species and the micro-environment in the forest. Understanding the community characteristics and the population structure of A. catalpifolium could provide a theoretical foundation for its reintroduction and recovery. © 2018 Science Press. All rights reserved. 相似文献
675.
Tang H.Yao Y.Zhang G.Li X.Ding H.Wu Y.Gao Y. 《应用与环境生物学报》2018,(2):335-341
BRI1-ASSOCIATED RECEPTORKINASE1(BAK1), a leucine-rich repeat (LRR) receptor protein kinase, plays a significant role in brassinosteroid (BR) signaling. Furthermore, it combines with other LRR-RLKs protein to initiate immune response in plants. The objective of this study was to (1) investigate the function of the Populus euphratica BAK1;1 gene in the resistance of transgenic tobacco to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and (2) discuss the regulation pathway of PeBAK1;1 involved in the resistance to plant pathogen. We cloned the cDNA sequence of the P. euphratica PeBAK1;1 gene, constructed the pBI121-35S::PeBAK1;1 over-expression vector, and then transformed it into wild-type tobacco by Agrobacterium-mediated transformation to obtain PeBA K 1;1-overexpressing transgenic tobacco plants. The bioinformatic analysis showed that the PeBAK1;1 protein contained all the structural features of the plant SERK family. The phylogenetic tree showed that PeBAK1;1 has the highest sequence homology with PtBAK1. The gene expression profile results indicated that the expression of PeBAK1;1 in the root was higher than that in the leaf and stem. The wild-type tobacco plants showed an obvious susceptibility to Pst DC3000, whereas the transgenic plants exhibited enhanced resistance to Pst DC3000. Compared with that of the wild-type (WT), the real-time PCR and quantitative real-time PCR analysis revealed that the expression of pathogenesis-related genes (including PR1, PR3, PR4, and PR5), BAK1-interacting receptor kinase 1 gene, and BONZAI1 gene was upregulated in 35S::PeBAK1;1 transgenic tobacco plants. In conclusion, the PeBAK1;1 gene plays a positive regulatory role in 35S::PeBAK1;1 transgenic tobacco against Pst DC3000, which can enhance the resistance of plants to pathogen. © 2018 Science Press. All rights reserved. 相似文献
676.
Ding J.Li G.Huang Z. 《应用与环境生物学报》2018,(3):657-662
Cytochrome P450 (CYP450s) is a type of heme-mercaptide protein superfamily, which is distributed widely in animals, plants, and microorganisms. CYP450s can oxidize and degrade many exogenous compounds such as drugs, herbicides, pesticides, some persistent organic pollutants, and so on. Based on recent researches, this paper reviews the nomenclature, classification, structure, and catalytic mechanism of P450 enzymes, and summarizes the research progresses in the metabolism and biodegradation of xenobiotics using P450 enzymes from microorganisms. The nomenclature and classification of the P450 gene superfamily mainly rely on the similarities of amino acid sequences. Although the structures of P450 are conserved, their recognition sites towards to the substrates are variable. This is also the structural basis for the catalytic diversities of P450 enzymes. Few P450 enzymes from bacteria and fungi can metabolize and degrade xenobiotics such as polycyclic aromatic hydrocarbons, herbicides, and so on. However, these P450 enzymes are less likely be used in practical applications because of their low catalytic activities. In the future, more P450 enzymes with high degradable efficiencies towards xenobiotics are needed to be obtained using multiple omics tools or modifying the existing P450 enzymes, to achieve the bioremediation of the environment. © 2018 Science Press. All rights reserved. 相似文献
677.
Mowing is the main management of Hulun Buir grasslands in Inner Mongolia; therefore, understanding the changes of soil organic carbon (SOC), total nitrogen (TN), and carbon sequestration under different mowing frequencies will provide an important scientific basis for grassland carbon sink management in Inner Mongolia. Three treatment plots were devised in the study area, including enclosed sample (Y), mowing every other year (2G), and mowing once a year (1G), where SOC, TN content and storage were investigated. The results showed that with increased mowing frequency, the SOC and TN content showed a decreasing trend in the 0-30 cm depth soil layer. The SOC and TN content were different in each soil layer, which decreased gradually with increasing soil depth in Y and 2G plots, whereas increased gradually in 1G plots. The soil carbon storage was significantly correlated with the soil nitrogen storage, and both showed a significant linear decrease with increased mowing frequency, which showed as carbon and nitrogen loss. In 2G plots, the soil carbon storage decreased by 17.1% and soil nitrogen storage decreased by 20.8%. In 1G plots, the soil carbon storage decreased by 21.6% and soil nitrogen storage decreased by 29.3%. The results showed that the change of soil carbon and nitrogen was sensitive to mowing frequency for the Hulun Buir grassland. It is possible to reduce the loss of carbon and nitrogen by reasonably controlling mowing frequency, and the sustainable use of grassland could be achieved with appropriate fertilization. Keywords. © 2018 Science Press. All rights reserved. 相似文献
678.
Considerable research has indicated that heat shock proteins (Hsp), as molecular chaperones, carry out many biological activities of plant viruses by folding, transporting, translocating, assembling, or degrading client proteins. It is fundamental to develop resistant plant varieties and novel anti-viral agents by determining the interaction mechanisms between plant viruses and hosts. In this study, we first reviewed the classification, gene and protein structure, and biological significances. We then analyzed the assembling mechanism of Hsp70 or Hsp90, plant host cofactors, and RNA-dependent RNA polymerases in a viral replicase complex, and the mechanism of interaction and subcellular localization between Hsp70 and some plant virus components. We highlighted the mechanism of interaction and movement between Hsp70 and some plant virus components and the effect of Hsp expression of plant hosts or viruses. The results indicated where the mechanism occurred, the participating factors, energy supply, and material conversion between Hsps and the plant virus components for the course of the intracellular movement, local movement between cells, and long-distance movement, and showed the Hsp type specificity and the law of dynamic Hsp expression in plant hosts infected by viruses. The studies mainly focused on the two Hsp factors and the plant viral components, indicating limited coordination mechanisms among many nucleic acids, proteins, and polysaccharides in macromolecular protein complexes (MRC). Future research should analyze the translocation mechanism between client proteins and Hsps, the coordination mechanism between Hsps and MRC components, and the relation between MRC and the plant tissue structure. © 2018 Science Press. All rights reserved. 相似文献
679.
微塑料与有机污染物的相互作用研究进展 总被引:1,自引:0,他引:1
微塑料(粒径小于5 mm的塑料)作为海洋中一种新型的污染物正受到越来越多的关注。微塑料在全球多个海域均有检出,根据其来源分为原生微塑料和次生微塑料。原生微塑料由人工直接制造所得,常见于日常生活用品中;次生微塑料由大块塑料制品长期风化、磨损和光解形成。塑料自身含有多种有机添加剂,不断向环境中释放,污染海洋环境;微塑料表面还可吸附有机污染物,此吸附作用受两者的物理化学性质和环境条件影响,吸附污染物后的微塑料生物毒性增强。另外,聚合物复合光催化材料可加快有机污染物如染料的光降解反应速率,因而微塑料可能会促进有机污染物的光解。针对目前微塑料对有机物光降解的贡献、机理鲜见研究的问题,未来应加强以下3方面的研究:(1)微塑料对不同有机污染物光降解是否存在影响?(2)微塑料类型、尺寸以及反应条件对有机污染物光降解如何影响?(3)微塑料对有机污染物光降解影响的内在机制是什么? 相似文献
680.
佳乐麝香对萝卜种子发芽及DNA损伤的生态毒理影响 总被引:1,自引:0,他引:1
由于佳乐麝香(HHCB)被广泛应用于日用化工产品中,被持续不断地释放到环境中,所产生的生态风险已引起越来越多的重视。为探究HHCB的生态毒性效应,在水培条件下考察了不同浓度HHCB对萝卜的表观生长指标(发芽率、根伸长抑制率、芽伸长抑制率)和基于随机引物扩增多态性(RAPD)图谱的根尖DNA损伤状况。研究结果显示:低剂量(≤25 mg·L~(-1))胁迫对萝卜发芽无显著影响(P0.05);高剂量(≥50 mg·L~(-1))胁迫可以显著抑制萝卜发芽率(P0.05)。萝卜的根长和芽长抑制率随HHCB浓度增加而呈上升趋势,且根伸长对HHCB胁迫较芽伸长更敏感,更适宜指示HHCB对植物的生态毒性效应。萝卜根尖基因组DNA的RAPD分析结果表明:大于或等于5 mg·L~(-1)的HHCB即可明显导致萝卜根尖基因组DNA损伤,且随着HHCB浓度的升高,根尖基因组DNA含量呈线性降低,DNA多态率增加,基因组模板稳定性(GTS)减小,遗传相似性变远。这表明较低剂量的HHCB胁迫就能够导致萝卜根尖基因组DNA损伤,且随浓度升高而损伤严重。因此,利用RAPD技术获得的萝卜DNA多态性变化可作为检测HHCB遗传毒性效应的敏感生物标记物,为化学品污染生态毒理早期诊断提供科学依据。 相似文献